Service Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team

10th Monthly Environmental Monitoring and Audit(EM&A) Report (August 2025)

Revision: 2 2025-09-11

Civil Engineering and Development Department West Development Office West Division (3) 9/F, Sha Tin Government Offices, 1 Sheung Wo Che Road, Sha Tin. New Territories

Attention: Ms. S. T. Kwong

Your Reference

--

Our Reference EC/TC/kl/ 601100407/L056

Mott MacDonald 3/F Manulife Place 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 F +852 2827 1823 mottmac.hk

Agreement No. CE 63/2023 (EP)

Independent Environmental Checker for Hung Shui Kiu / Ha Tsuen New Development Area Second Phase Development – Investigation

10th Monthly Environmental Monitoring and Audit (EM&A) Report (August 2025)

11 September 2025

BY EMAIL

Dear Sir,

We refer to email of 11 September 2025 attaching the 10th Monthly Environmental Monitoring and Audit (EM&A) Report (August 2025) prepared by the Environmental Team (ET) of the captioned.

We would like to inform you that we have no adverse comment on the captioned submission. Therefore, we write to verify the captioned submission in accordance with the requirement stipulated in Section 15.1.1 of the Updated Environmental Monitoring and Audit Manual.

Should you have any queries, please contact the undersigned at 2828 5967.

Yours faithfully,

For and on behalf of the

MOTT MACDONALD HONG KONG LIMITED

Ir Thomas Chan

Independent Environmental Checker

T +852 2828 5967

Thomas.Chan@mottmac.com

C.C.

Arup Mr. Ken Chan Aurecon Mr. F. C. Tsang (By email) (By email)

Document control record

Document prepared by: Aurecon Hong Kong Limited

Unit 1608, 16/F, Tower B, Manulife Financial Centre, 223 – 231 Wai Yip Street, Kwun Tong, Kowloon Hong Kong S. A. R.

T +852 3664 6888

F +852 3664 6999

E hongkong@aurecongroup.com

W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Doc		aurecon							
Rep	ort title	10th Monthly Environment	10th Monthly Environmental Monitoring and Audit(EM&A) Report (August 2025)						
Document code		EM&A-10	Project number		P526864				
File	path								
Client									
Client contact			Client reference						
Re v	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver			
1	08/09/2025	First Issue	Kitty Wang	Ray Yan		F. C. Tsang			
2 11/09/2025		Second Issue	Kitty Wang	Ray Yan		F. C. Tsang			
Curr	ent revision	2							

Approval							
Author signature	Any-	Certified by	Tourf Faulbeing				
Name	Kitty Wang	Name	F. C. Tsang				
Title	Environmental Team Consultant	Title	Environmental Team Leader				

Contents

E	XECU	TIVE SUMMARY	5
1	INT	FRODUCTION	9
	1.1 1.2 1.3 1.4	PROJECT BACKGROUND PROJECT ORGANISATION CONSTRUCTION WORKS PROGRAMME AND CONSTRUCTION WORKS AREA SUMMARY OF ENVIRONMENTAL STATUS	9 10
2	AIF	R QUALITY MONITORING	14
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	MONITORING REQUIREMENT	
3	СО	NSTRUCTION NOISE MONITORING	19
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	MONITORING REQUIREMENTS	
4	WA	ATER QUALITY	25
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	MONITORING REQUIREMENT. MONITORING LOCATION	25 26 26 29 30 30 32
5		ASTE MANAGEMENT	
6	6.1 6.2	MONITORING AND AUDIT REQUIREMENTSRESULTS AND OBSERVATIONS	34
7	LA	NDSCAPE AND VISUAL	35
	7.1 7.2 7.3	AUDIT REQUIREMENTS	38
8	EN	VIRONMENTAL SITE INSPECTION AND AUDIT	39
	8 1	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	30

	RY OF MONITORING EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS CUTIONS41
9.2 SUM 9.3 SUM	MARY OF EXCEEDANCE
	RE KEY ISSUES
10.1 W	ORKS AND POTENTIAL ENVIRONMENTAL ISSUES IN THE NEXT REPORTING PERIOD
11 CONC	LUSIONS45
	ONCLUSION
Appendi	ces
Appendix 1.1 Appendix 1.2 Appendix 1.3 Appendix 2.1 Appendix 2.2 Appendix 2.3 Appendix 2.4 Appendix 3.1 Appendix 3.2 Appendix 3.3 Appendix 4.1 Appendix 4.2 Appendix 4.3 Appendix 4.4 Appendix 5.1 Appendix 7.1 Appendix 9.1 Appendix 10.	Implementation Status of Environmental Mitigation Measure Impact Monitoring Schedule of the Reporting Month Calibration Certificates of Impact Air Quality Monitoring Equipment Impact Air Quality Monitoring Data Weather Information during the Reporting Period Event and Action Plan for Air Quality Calibration Certificates of Impact Noise Monitoring Equipment Impact Noise Monitoring Data Event and Action Plan for Noise Calibration Certificates of Impact Water Quality Monitoring Equipment Impact Water Quality Monitoring Data Quality Control Report for Suspended Solids Event and Action Plan for Water Quality Summary of Monthly Waste Flow Table Event and Action Plan for Landscape and Visual Complaint Log
Figures	
Figure 1.1 Figure 1.2	General Site Location Plan Annotated Site Drawing Presenting the Construction Activities Conducted at Contract 1 in the Reporting Period
Figure 1.3	Annotated Site Drawing Presenting the Construction Activities Conducted at Contract 2
Figure 1.4	in the Reporting Period Annotated Site Drawing Presenting the Construction Activities Conducted at Contract 3 in the Reporting Period
Figure 2.1 Figure 3.1	Impact Air Quality Monitoring Locations Impact Noise Monitoring Locations
Figure 3.1	Impact Water Quality Monitoring Locations
Figure 6.1	HSK Egretry and the 100m extent from the HSK Egretry associated with the footprint of Contract 2
Figure 6.2	HSK Egretry and the 100m extent from the HSK Egretry associated with the footprint of Contract 3

Tables

Table A1	Summary of EM&A activities in the Reporting Period
Table A2	Summary of Exceedances in the Reporting Period
Table 1.1	Parties Involved in Project Organisation
Table 1.2	Status of Environmental License, Notifications and Permits for Contract 1
Table 1.3	Status of Environmental License, Notifications and Permits for Contract 2
Table 1.4	Status of Environmental License, Notifications and Permits for Contract 3
Table 2.1	Summary of Impact Air Quality Monitoring Stations in related to the works contracts in the reporting period
Table 2.2	Parameters measured in the Impact Air Quality Monitoring
Table 2.3	Water Quality Monitoring Equipment
Table 2.4	Air Quality Monitoring Equipment
Table 2.5	Action and Limit Levels for Air Quality Monitoring
Table 2.6	Summary of Air Quality Monitoring Results in related to the works contracts in the
T 11 04	reporting period
Table 3.1	Construction Noise Monitoring Stations near in related to the works contracts in the reporting period
Table 3.2	Construction Noise Monitoring Parameter, Frequency and Duration
Table 3.3	Construction Noise Monitoring Equipment
Table 3.4	Action and Limit Levels for Construction Noise Monitoring
Table 3.5	Summary of Construction Noise Monitoring Results in related to the works contracts in the reporting period
Table 4.1	Summary of Impact Water Quality Monitoring Stations in related to the works contracts in
T 11. 40	the reporting period
Table 4.2	Parameters measured in the Impact Water Quality Monitoring
Table 4.3	Water Quality Monitoring Equipment
Table 4.4	Method for Laboratory Analysis for Water Samples
Table 4.5	Action and Limit Levels for Water Quality
Table 4.6	Action and Limit Levels of Water Quality
Table 4.7	Summary of Exceedance Records of Water Quality Monitoring in related to the works contracts in the reporting period
Table 5.1	Summary of Waste Generated by the Construction Works in related to the Works
T-1-1- C 4	Contracts in the Reporting Period
Table 6.1	Status and Representative Photo of Each Active Nest Recorded at the Hung Shui Kiu Egretry during the Reporting Period
Table 6.2	Schedule for Bat Roost Survey at Contract 2 during the Reporting Period
Table 6.3	Schedule for Bat Roost Survey at Contract 3 during the Reporting Period
Table 6.4	Upcoming Schedule for Bat Roost Survey at Contract 2 in the Next Reporting Period
Table 8.1	Site Observations at Contract 1 during the reporting period
Table 8.2	Site Observations at Contract 2 during the reporting period
Table 8.3	Site Observations at Contract 3 during the reporting period

Executive Summary

- A1. This is the 10th Monthly Environment Monitoring and Audit (EM&A) Report for Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development (the Project). This report was prepared by Aurecon Hong Kong Limited (Aurecon) under Service Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development Environmental Team (hereinafter called the "Service Contract"). This report documents the findings of EM&A works at Contract No. YL/2023/01 (hereinafter called the "Contract 1"), Contract No. YL/2023/02 (hereinafter called the "Contract 2") and Contract No. YL/2023/03 (hereinafter called the "Contract 3") under the Project during the reporting period from 1 to 31 August 2025.
- A2. The construction phase EM&A programme of Contract 1 and Contract 2 started on 1 November 2024. The construction phase EM&A programme of Contract 3 started on 4 August 2025.

Key Construction Works in the Reporting Period

A3. A summary of construction activities undertaken during the reporting period is presented below:

Contract 1

- Underground Utility Detection;
- · Ground Investigation Works;
- Watermains Laying Works at Part F;
- Excavation Works at Part T;
- Removal of Bar Fencing;
- FS Tank Room Construction:
- Construction of CLC Superstructure
- Demolition of Warehouses;
- Tree Felling Works.

Contract 2

- Tree Felling;
- Ground Investigation;
- General Temporary Slope Works;
- Piezometer / Standpipe Installation;
- Preparation of TTA for Pipe Laying.

Contract 3

- Site Clearance;
- Pai Lau Construction;
- · Ground Investigation;
- Construction of L10 Road;
- · Removal of existing drainage.

Environmental Monitoring and Audit Programme

A4. The monthly EM&A programme was undertaken by the ET in accordance with the Updated EM&A Manual (Apr 2022). A summary of the monitoring and audit activities during the reporting period is presented in **Table A1**.

Table A1 Summary of EM&A activities in the Reporting Period

EM&A Activities	Date		
Air Quality Monitoring	1, 2, 6, 7, 12, 13, 18, 19, 23, 25, 29 and 30 August 2025		
Noise Monitoring	6, 8, 11, 12, 16, 18, 19, 25 and 29 August 2025		
Water Quality Monitoring (1)	1, 7, 9, 11, 13, 16, 18, 20, 23, 25, 27 and 29 August 2025		
Ecological Monitoring (Egretry Monitoring)	22 August 2025		
Ecological Monitoring (Bat Roost Survey (Contract 2))	8 and 20 August 2025		
Ecological Monitoring (Bat Roost Survey (Contract 3))	22 August 2025		
Weekly Environmental Site Inspection (Contract 1)	7, 15, 22 and 28 August 2025		
Weekly Environmental Site Inspection (Contract 2)	1,8, 15, 22 and 29 August 2025		
Weekly Environmental Site Inspection (Contract 3)	6, 13, 20 and 27 August 2025		

Notes:

Breaches of Action and Limit Levels

A5. Summary of the environmental exceedances of the reporting period is tabulated in Table A2.

⁽¹⁾ As the Black Rainstorm Warning Signal was issued on 5 August 2025, the water quality monitoring event that was originally scheduled on 5 August 2025 had been cancelled due to safety reasons and unstable weather condition.

Table A2 Summary of Exceedances in the Reporting Period

Environmental Monitoring	Parameter	AL No. of	Exceedances	Total No. of Exceedances	AL No. of Non-	project Related Exceedances LL	Total No. of Non-project Related Exceedances	AL No. of Exceedances	Related to LL the Project	Total No. of Exceedances Related to the Project
Air Quality	1-hour TSP	0	0	0	0	0	0	0	0	0
Noise	L _{eq(30mins)}	0	0	0	0	0	0	0	0	0
	DO	0	0	0	0	0	0	0	0	0
Water Quality	Turbidity	0	0	0	0	0	0	0	0	0
	SS	0	0	0	0	0	0	0	0	0
	рН	0	0	0	0	0	0	0	0	0

Air Quality

A6. All air quality monitoring was conducted as scheduled in the reporting period. No Action Level or Limit Level exceedance was recorded for air quality monitoring in the reporting period.

Noise

A7. All construction noise monitoring was conducted as scheduled in the reporting period. No Action Level or Limit Level exceedance was recorded for construction noise monitoring in the reporting period.

Water Quality

- A8. As the Black Rainstorm Warning Signal was issued on 5 August 2025, the water quality monitoring event that was originally scheduled on 5 August 2025 had been cancelled due to safety reasons and unstable weather condition. No Action Level or Limit Level exceedance was recorded for water quality monitoring in the reporting period <u>Ecological</u>
- A9. All ecological monitoring was conducted as scheduled in the reporting period. No findings observed during the bat roost survey at Contract 2 and Contract 3. A total of 3 active nests of Little Egret were recorded at trees on both side of the drainage channel during the egretry monitoring.

Complaint Log

A10. No environmental complaint was received in the reporting period.

Notification of Summons and Successful Prosecutions

A11. No notification of summons or successful prosecutions was received in the reporting period.

Reporting Changes

A12. As the construction phase EM&A programme of Contract 3 started on 4 August 2025, the findings of EM&A works at Contract 3 under the Project are reported starting from this reporting period.

Future Key Issues

A13. The major site activities for the next reporting period are summarized below:

Contract 1

- Underground Utility Detection;
- Ground Investigation Works;
- Watermains Laying Works at Part F;
- · Removal of Bar Fencing;
- Excavation Works at Part T;
- Demolition of Villager's Houses;
- Tree Felling Works;
- · Construction of CLC Superstructure;
- · Demolition of Warehouses;
- Construction of Pole Mount Transformer;
- CLC Sewerage Connection Works at Kiu Cheong Road.

Contract 2

- Tree Felling;
- · Ground Investigation Works;
- General Temporary Slope Works;
- Piezometer / Standpipe Installation;
- Preparation of TTA for pipe laying;
- Pipe laying.

Contract 3

- Site Clearance;
- Pai Lau Construction;
- Ground Investigation;
- Construction of L10 Road;
- Box Culvert excavation at Tin Ha Road;
- Construction of Temporary Nullah;
- Drainage work;
- Underground Utilities laying works.

1 Introduction

1.1 Project Background

- 1.1.1 The development area of HSK/HT NDA is about 441 hectares (ha), and is located at the north-western part of the New Territories, midway between the Tuen Mun and Tin Shui Wai New Towns. The HSK/HT NDA will provide associated engineering infrastructure and supply land for subsequent development of public and private housing, community facilities, commercial and industrial premises, the Green Transit Corridor (comprising the Smart and Green Mass Transit System, footpaths and cycle tracks) and other uses, and for construction of the proposed infrastructure works such as district distributor roads, local roads, revitalisation of existing channels, sewerage (including pumping stations), drainage (including pumping stations), water supply, landscaping, electrical and mechanical (E&M), and associated works.
- 1.1.2 HSK/HT NDA is being implemented in three phases, viz. First Phase development, Second Phase development and Remaining Phase development. The Civil Engineering and Development Department (CEDD) commences construction works for the Second Phase development of HSK/HT NDA progressively from 2024.
- 1.1.3 Aurecon was commissioned by CEDD to provide EM&A services for the works contracts in relation to the Project pursuant to the requirements as specified in relevant EP, the Updated EM&A Manual (Apr 2022) and the approved EIA Report for the Project to discharge the duties of the ET for the Project, including the baseline monitoring works for various monitoring parameters (e.g. AQM, CNM, WQM, etc.).
- 1.1.4 This is the 10th Monthly EM&A Report summarizing the key findings of the construction phase EM&A programme at Contract 1 and Contract 2 from 1 to 31 August 2025 (the reporting period), and the key findings of the construction phase EM&A programme at Contract 3 from 4 to 31 August 2025, and is submitted to fulfil the requirements in Condition 3.3 of the EPs (i.e. EP-531/2017, EP-530/2017, EP-529/2017, EP-528/2017 & EP-527/2017) and Section 15.3 of the Updated EM&A Manual (Apr 2022) of the Project.

1.2 Project Organisation

1.2.1 Parties with different levels of involvement in the Project organisation are summarized in **Table 1.1**.

Table 1.1 Parties Involved in Project Organisation

Parties	Organ	Organization / Company			
Project Proponent	Proponent Civil Engineering and Development Department (CEDD)				
Supervisor / Engineer's Representative (ER)	Ove Arup & Partners Hong Kong Limited				
Contractor	Contract No. YL/2023/01	Sang Hing – Kuly Joint Venture (SKJV)			
	(Contract 1)				

Parties	Organization / Company			
	Contract No. YL/2023/02 (Contract 2)	Chun Wo - Build king - Yee Hop Joint Venture (CWBKYH JV)		
	Contract No. YL/2023/03 (Contract 3)	Gammon – Richwell Engineering Joint Venture		
Environmental Team (ET)	Aurecon	Hong Kong Limited		
Independent Environmental Checker (IEC)	Mott MacDo	nald Hong Kong Limited		

1.2.2 The key personnel contact names and numbers are summarized in Appendix 1.2.

1.3 Construction Works Programme and Construction Works Area

1.3.1 The construction phase EM&A programme of Contract 1 and Contract 2 commenced on 1 November 2024. The construction phase EM&A programme of Contract 3 commenced on 4 August 2025. The construction works programme, and the construction works area of the Project are shown in **Appendix 1.1** and **Figure 1.1** respectively. A summary of construction activities undertaken at Contract 1, Contract 2 and Contract 3 during this reporting period is presented below, and in **Figures 1.2 to 1.4** respectively:

Contract 1

- Underground Utility Detection;
- · Ground Investigation Works;
- Watermains Laying Works at Part F;
- Excavation Works at Part T;
- Removal of Bar Fencing;
- FS Tank Room Construction;
- Construction of CLC Superstructure
- Demolition of Warehouses;
- Tree Felling Works.

Contract 2

- Tree Felling;
- Ground Investigation;
- General Temporary Slope Works;
- · Piezometer / Standpipe Installation;
- Preparation of TTA for Pipe Laying.

Contract 3

- Site Clearance;
- Pai Lau Construction;
- Ground Investigation;
- Construction of L10 Road;
- Removal of existing drainage.

1.4 Summary of Environmental Status

1.4.1 A summary of the relevant permits, licences, and/or notifications on environmental protection for the work contracts that are involved in this reporting period is presented in **Tables 1.2 to 1.4** respectively.

Table 1.2 Status of Environmental License, Notifications and Permits for Contract 1

Dawnit / Licanos Nama/Na	Valid Pe	Chahua		
Permit / License Name/No.	From	То	Status	
Environmental Permit				
EP-527/2017	21/02/2017	N/A	Valid	
EP-528/2017	21/02/2017	N/A	Valid	
EP-529/2017	21/02/2017	N/A	Valid	
EP-530/2017	21/02/2017	N/A	Valid	
EP-531/2017	21/02/2017	N/A	Valid	
Notification pursuant to Air Pollution Control	(Construction Dust) F	Regulation		
Notification that notifiable works are anticipated to commence (EPD Ref. number: 10005999)	18/06/2024	N/A	Valid	
Billing Account for Disposal of Construction	Waste			
7051388	24/06/2024	N/A	Valid	
Registration of Chemical Waste Producer				
5111-515-S4596-01	05/02/2025	N/A	Valid	
Effluent Discharge License under Water Pol	llution Control Ordinar	nce		
WT00046153-2025	07/03/2025	31/03/2030	Valid	
WT00046158-2025	13/03/2025	31/03/2030	Valid	
WT00046303-2025	28/03/2025	31/03/2030	Valid	
Construction Noise Permit (CNP)				
GW-RN0579-25	04/06/2025	03/12/2025	Valid (Part T)	
GW-RN0747-25	09/07/2025	08/10/2025	Valid (Kiu Cheong Road)	

Table 1.3 Status of Environmental License, Notifications and Permits for Contract 2

Table 1.3 Status of Environment	Valid Pe		
Permit / License Name/No.	From	То	Status
Notification pursuant to Air Pollution Control	(Construction Dust) F	Regulation	
Notification that notifiable works are anticipated to commence (Area A) (EPD Ref. number: 10005847)	13/06/2024	N/A	Valid
Notification that notifiable works are anticipated to commence (Area B) (EPD Ref. number: 10006337)	26/06/2024	N/A	Valid
Notification that notifiable works are anticipated to commence (Area C) (EPD Ref. number: 10006331)	26/06/2024	N/A	Valid
Notification that notifiable works are anticipated to commence (Area D) (EPD Ref. number: 10006336)	26/06/2024	N/A	Valid
Billing Account for Disposal of Construction	Waste		
7051428	26/06/2024	N/A	Valid
Account for Registration of Chemical Waste	Producer		
WPN: 5213519C498001	13/08/2024	N/A	Valid
Effluent Discharge License under Water Po	llution Control Ordinar	nce	
WT00045936-2025	05/03/2025	31/03/2030	Valid
WT00046920-2025	14/07/2025	31/07/2030	Valid
Construction Noise Permit (CNP)			
GW-RN0620-25	11/06/2025	10/09/2025	Withdrawn during the reporting period
GW-RN0621-25	11/06/2025	10/09/2025	Valid (Gravel Road)
GW-RN0820-25	25/07/2025	24/10/2025	Valid (Shap Pat Heung Road)

Table 1.4 Status of Environmental License, Notifications and Permits for Contract 3

Permit / License Name/No.	Valid Per	Status				
Fermit / License Mame/No.	From	То	Status			
Environmental Permit						
EP-527/2017	21/02/2017	N/A	Valid			
EP-528/2017	21/02/2017	N/A	Valid			
EP-529/2017	21/02/2017	N/A	Valid			
EP-530/2017	21/02/2017	N/A	Valid			
Notification pursuant to Air Pollution Control	(Construction Dust) Re	egulation				
Notification that notifiable works are anticipated to commence (EPD Ref. number: 10010499)	23/10/2024	N/A	Valid			
Billing Account for Disposal of Construction Waste						
7052807	18/11/2024	N/A	Valid			

Permit / License Name/No.	Valid Pe	Status	
Permit / License Name/No.	From	То	Status
Registration of Chemical Waste Producer			
WPN-5213-441-G3075-01	16/12/2024	N/A	Valid
Effluent Discharge License under Water Poll	ution Control Ordinar	nce	
WT00046145-2025	12/03/2025	31/03/2030	Valid
WT00046965-2025	31/07/2025	31/07/2030	Valid
Construction Noise Permit (CNP)			
GW-RW0545-25	11/06/2025	10/12/2025	Valid
			(Part E5)
GW-RN0875-25	30/07/2025	29/10/2025	Valid
			(Tin Ha Road)

2 Air Quality Monitoring

2.1 Monitoring Requirement

2.1.1 In accordance with the Updated EM&A Manual (Apr 2022), the ET shall carry out impact monitoring during the construction phase of the Project. 1-hour Total Suspended Particulates (TSP) should be conducted at a frequency of at least three times in every six days when the highest dust impact occurs.

2.2 Monitoring Location

2.2.1 According to the Updated EM&A Manual (Apr 2022), the designated locations for impact air quality monitoring in related to the works contracts in the reporting period are listed in **Table 2.1** and their locations are shown in **Figure 2.1**.

Table 2.1 Summary of Impact Air Quality Monitoring Stations in related to the works contracts in the reporting period

Station(s)	EIA ID	Monitoring Location	
AM1	A204	Kam Cheong Garden	
AM2	A208	Oaklands Court	
AM3	A209	Ling Liang Church Primary School	
AM4	A310	Tin Ha Road Playground	
AM5	A415	Tin Sum Tsuen	
AM6	A410	Galore Garden	
AM7	A414	Shek Po Tusen	
AM8a ^{(1) (2)}	A813	Block J, Tin Shing Court	
AM10	A802	Kiu Tau Wai	
AM11	A703	Sha Chau Lei Tsuen	
AM12	A704	Ha Tsuen Shi	
AM14	A601	Tseung Kong Wai	
AM16	A1103	Block 8, Locwood Court	
AM22	P240	Planned Village Resite at Site 4-20	
AM24	P1501	Planned Port Back-up, Storage and Workshop at Site 3-8	
AM25a	-	San Wai Sewage Treatment Works	

Notes:

- (2) AM8a is the alternative noise monitoring stations proposed to replace AM8.
- (3) As the Owners' Corporation for Tin Shing Court refused to grant the permission to access to carry out the set-up of monitoring equipment at the proposed location for subsequent impact monitoring period, a new location, which is at a short distance from the original location (25m), has been then identified and submitted through the proposal of the alternative monitoring location for the impact monitoring. Agreement has been obtained from IEC upon proposal of the alternative monitoring location for the impact monitoring at AM8a.
- 2.2.2 In accordance with the Table A2.4 in Appendix A of the Updated EM&A Manual (Apr 2022), impact air quality monitoring will be carried out at monitoring stations AM22, AM24 and AM25a after the occupation of the planned port back-up, storage and workshop, and the planned village resite.

2.2.3 As confirmed with ER, the planned port back-up, storages and workshops at Site 3-8, Site 3-14 and the planned village resite Site 4-20 are not constructed yet. Thus, the impact air quality monitoring will be carried out at AM22, AM24 and AM25a after the construction and occupation of these planned port back-up, storages and workshops, and the planned village resite. No air quality monitoring of the mentioned stations was carried out in this reporting period.

2.3 Monitoring Parameter and Frequency and Duration

2.3.1 In accordance to the requirements for placement of equipment, as set out in Section 4.7.1 of the Updated EM&A Manual (Apr 2022) of the Project, the monitoring parameter, frequency and duration of impact air quality monitoring are listed in **Table 2.2**.

Table 2.2 Parameters measured in the Impact Air Quality Monitoring

Parameter	Frequency	Duration
1-hour TSP	3 times for every 6 days	Throughout the construction phase

2.3.2 Monitoring location, time and weather conditions and any special phenomena or work underway nearby are recorded during the impact monitoring.

2.4 Monitoring Equipment

- 2.4.1 Upon approval of the IEC, 1-hour TSP levels can be measured by direct reading method with using handheld dust meter, which is capable of producing comparable results as that by the high-volume sampling method, to indicate short event impacts.
- 2.4.2 The proposed use of handheld dust meter was submitted to the IEC and agreement was obtained from the IEC in accordance with Section 4.5.5 of the Updated EM&A Manual (Apr 2022).
- 2.4.3 **Table 2.3** summarizes the equipment used in the air quality monitoring programme. Copies of the calibration certificates of air quality monitoring equipment are shown in **Appendix 2.1**.

Table 2.3 Air Quality Monitoring Equipment

Equipment	Manufacturer	Model	Quantity	Serial No.
TSP HVS	Tisch	TE-5170X	2	1050
				1086
HVS Calibrator	Tisch	TE-5025A	1	3465
Direct Reading	Sibata	LD-5R	5	467356
Dust Meter				467358
				467359
				467360
				882107

2.5 Monitoring Methodology

- 2.5.1 The 1-hr TSP was sampled by drawing air into the portable dust monitor where particular concentrations were measured instantaneously with an in-built silicon detector sensing light scattered by the particulates in the sampled air. Continuous TSP levels were indicated and logged by a built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 2.5.2 The measuring procedures of the 1-hour dust meter was undertaken in accordance with the Manufacturer's Instruction Manual as follows:
 - Placed the 1-hour dust meter at least 1.5m above ground;
 - Set POWER to "ON" and make sure that the battery level was not flashed or in low level;
 - Pulled the air sampling inlet cover up;
 - · Pushed the knob at MEASURE position;
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, started the background measurement by pushing the start/stop switch once. It took 6 sec. to complete the background measurement;
 - Turned knob to SENSI. ADJ position and pressed in;
 - · Pushed Start/Stop switch once;
 - Gently returned knob to the MEASURE position;
 - Pushed the time setting switch to change the time setting display to [LOG] at the bottom left of the liquid crystal display;
 - · Removed the cap and started measurement; and
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period

2.6 Maintenance/Calibration

- 2.6.1 The following maintenance/calibration was required for the direct dust meters:
- 2.6.2 Check and calibrate the dust meter by high volume sampler (HVS) to check the validity and accuracy of the results measured by direct reading method. Calibration of dust meter should be carried out every twelve months throughout all stages of the air quality monitoring. The calibration certificates of the monitoring equipment are presented in **Appendix 2.1**.
- 2.6.3 The correlation coefficient was checked to establish the correlation relationship between the handheld dust meter and HVS. The correlation factor was determined by comparing the results of HVS and handheld dust meter.

2.6.4 Checking is made prior to air quality monitoring commencing to ensure all equipment is in good working condition with necessary power supply. Zero count test were conducted before and after each monitoring event.

2.7 Action and Limit Level for Air Quality Monitoring

2.7.1 The baseline monitoring results formed the basis for determining the air quality criteria for the impact monitoring. The ET shall compare the impact monitoring results with air quality criteria set up for 1-hour TSP. Based on the baseline dust monitoring data and the derivation criteria specified above, the Action/Limit Levels are presented in **Table 2.5**.

Table 2.5 Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action Level (μg/m3)	Limit Level (µg/m3)
AM1	266	500
AM2	271	_
AM3	273	_
AM4	268	_
AM5	272	_
AM6	271	_
AM7	282	_
AM8a	267	_
AM10	271	_
AM11	276	_
AM12	273	_
AM14	280	_
AM16	280	_
AM22	274	
AM24 ⁽¹⁾	290	
AM25a ⁽¹⁾	300	_

Note:

2.8 Results and Observations

- 2.8.1 All air quality monitoring was conducted as scheduled in the reporting period. The air quality monitoring schedule for this reporting period is shown in **Appendix 1.4**.
- 2.8.2 The air quality monitoring results in related to the works contracts in the reporting period are summarized in **Table 2.6**. No Action or Limit levels exceedance was recorded in the reporting period. Details of the results and graphical presentation are shown in **Appendix 2.2**.

⁽¹⁾ The Action Level of AM24 an AM25a was determined in the baseline monitoring under the baseline air quality monitoring of HSK/HT NDA Stage 1 Works in December 2021.

Table 2.6 Summary of Air Quality Monitoring Results in related to the works contracts in the reporting period

Monitoring Station	Averaged Measured Value (µg/m³)	Minimum Measured Value (μg/m³)	Maximum Measured Value (μg/m³)	Action Level (µg/m³)	Limit Level, (µg/m³)
AM1	22	3	76	266	500
AM2	8	4	17	271	
AM3	9	3	19	273	
AM4	10	6	21	268	
AM5	8	4	13	272	
AM6	9	6	16	271	
AM7	21	3	56	282	
AM8a	20	1	64	267	•
AM10	16	6	36	271	
AM11	16	3	49	276	•
AM12	14	4	27	273	
AM14	25	2	85	280	
AM16	6	2	10	280	

- 2.8.3 The major dust source at AM1, AM3, AM6, AM7, AM8a and AM11 included vehicle emission and dust from traffic. At AM2 and AM14, major dust sources included vehicle emission observed nearby. No other sources dust emission was observed at AM4, AM5, AM10, AM12 and AM16 during air quality monitoring.
- 2.8.4 Weather condition of the whole baseline monitoring period varied from sunny to rainy. Wind data during the period of baseline monitoring from the Hong Kong Observatory Lau Fau Shan Wind Station (22.46889N, 113.98361E), which is located about 1.25 km from the nearest site boundary of Contract 6. The elevation of the station is 31m above mean sea level and the elevation of anemometer at the station is 50m above mean sea level. The weather information during the reporting period is summarized in **Appendix 2.3**.

2.9 Event and Action Plan

2.9.1 Should any non-compliance of the criteria occur, action in accordance with the Event and Action Plan in Appendix 2.4 shall be followed. Investigation of the exceedances of environmental quality performance limits should be conducted, and the ET will immediately notify the IEC and EPD, as appropriate. The notification should be followed up with advice to the IEC and EPD on the results of the investigation, proposed actions and success of the action taken, with any necessary follow-up proposals.

3 Construction Noise Monitoring

3.1 Monitoring Requirements

3.1.1 In accordance with the Updated EM&A Manual (Apr 2022), the ET shall carry out impact monitoring during the construction phase of the Project in terms of the A-weighted equivalent continuous sound pressure level (Leq) to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station was on a weekly basis and one set of measurements between 0700 and 1900 hours on normal weekdays shall be conducted.

3.2 Monitoring Locations

3.2.1 According to the Updated EM&A Manual (Apr 2022), the monitoring designated locations for construction noise monitoring in related to the works contracts in the reporting period are listed in **Table 3.1** and shown in **Figure 3.1**.

Table 3.1 Construction Noise Monitoring Stations near in related to the works contracts in the reporting period

Monitoring Station	EIA ID	Location	Nature of Uses	Type of Measurement
CM1 ⁽²⁾	ETCW02	No. 739, Oaklands Court	Residential	Free-Field
CM2 (2)	ESFW01	No. 332, Chung Uk Tsuen	Residential	Free-Field
CM3 (2)	ESFW02	Village house, Nai Wai	Residential	Free-Field
CM4a (1) (2)		Village Representative Building at Chung Uk Tsuen	Residential	Free-Field
CM9	ETSW08	VTC Youth College (Tin Shui Wai)	Educational Institution	Façade
CM10	ETSW11	YLPMSAA Tang Siu Tong Secondary School	Educational Institution	Façade
CM11 (2)	E53902	No. 125, Lee Fong Yuen	Residential	Free-Field
CM12 (2)	ETST05b	No. 143, Tin Sum, (West Façade)	Residential	Free-Field
CM13	ESLUT01	No. 46A San Lee Uk Tsuen	Residential	Façade
CM14 (2)		No. 62, San Lee Uk Tsuen	Residential	Free Field
CM15a ^{(1) (2)}		Block 15, Bellevue Court	Residential	Free Field
CM16	E52505	Hung Yan House, Hung Fuk Estate	Residential	Façade
CM17a ^{(1) (2)}		No. 120, Kiu Tau Wai Tsuen	Residential	Free Field
CM18 (2)	ESPT06	No. 201, Shek Po Tsuen	Residential	Free Field
CM19 (2)	ESPT07	No. 60 San Sang Tsuen	Residential	Free-Field
CM20 (2)	ESCL03	No. 45, Sha Chau Lei Tsuen	Residential	Free-Field
CM27a ^{(1) (2)}	40305	Lamp pole VD 8185 opposite to San Sang San Tsuen	-	Free-Field
CM28 (2)	42001	Planned Residential Development in Site 4- 20	Residential	Free-Field
CM29 (2)	42251	Planned Residential Development in Site 4- 22	Residential	Free-Field
CM31 ⁽²⁾	52408	Planned Residential Development in Site 5- 24	Residential	Free-Field

Monitoring Station	EIA ID	Location	Nature of Uses	Type of Measurement
CM32 (2)	52151	Planned School in Site 5-21	Educational Institution	Free-Field

Notes:

- (1) Alternative noise monitoring stations to replace the original noise monitoring stations in accordance with the Proposal of Alternative Monitoring Locations approved by EPD.
- (2) For Free Field measurement, +3 dB(A) should be added to the measured results.
- 3.2.2 As confirmed with ER, the planned residential development at Site 4-20, Site 5-22, Site 5-24 and near San Sang San Tsuen, and the planned school at Site 5-21 are not constructed yet. Thus, the impact noise monitoring will be carried out at monitoring stations CM27a, CM28, CM29, CM31 and CM32 after the construction and occupation of these planned residential development and the planned school. No noise monitoring of the mentioned stations was carried out in this reporting period.

3.3 Noise Monitoring Parameter, Frequency and Duration

- 3.3.1 Construction noise level was measured by the ET and measured in terms of the A-weighted equivalent continuous sound pressure level (Leq). Leq(30mins) used as the monitoring parameter for the construction noise monitoring.
- 3.3.2 As supplementary information for data auditing, statistical results such as L₁₀ and L₉₀ were also obtained for reference.
- 3.3.3 **Table 3.2** summarizes the monitoring parameters, duration, and frequency of construction noise monitoring.

Table 3.2 Construction Noise Monitoring Parameter, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
CM1, CM2, CM3, CM4a, CM9 CM10, CM11, CM12, CM13, CM14, CM15a, CM16, CM17a, CM18, CM19 and CM20	$L_{\text{eq(30mins)}},L_{10}$ and L_{90}	Once every week throughout the construction phase

3.4 Monitoring Equipment, Methodology and QA / QC Procedure

- 3.4.1 As referred to the technical memorandum issued under the Noise Control Ordinance (NCO), sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications were used for carrying out the construction noise monitoring.
- 3.4.2 Noise measurements were not made in fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. The wind speed was checked with a portable wind speed meter capable of measuring the wind speed in m/s.

- 3.4.3 Sufficient numbers of noise measuring equipment and associated instrumentation were prepared by the ET. All the equipment and associated instrumentation were clearly labelled.
- 3.4.4 The monitoring procedures are as follows:
 - For façade measurement, the monitoring station was set at a point 1 m from the exterior of the sensitive receivers building façade and set at a position 1.2 m above the ground. For free-field measurement, the monitoring station was set at a position 1.2 m above the ground.
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the interval were set as follows:
 - Frequency weighting: A
 - Time weighting: Fast
 - Interval: 30 minutes (Leq(30mins))
 - Prior to and after each noise measurement, the meter was calibrated using an acoustic calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement will be required after re-calibration or repair of the equipment.
 - At the end of the monitoring period, the values of L_{eq}, L₁₀ and L₉₀ were recorded. In addition, noise sources were recorded on a standard record sheet.
- 3.4.5 **Table 3.3** summarizes the noise monitoring equipment used during the construction noise monitoring. Calibration certificates for the impact noise monitoring equipment are attached in **Appendix 3.1**.

Table 3.3 Construction Noise Monitoring Equipment

Equipment	Manufacturer	Model	No. of Equipment	Serial No.
Sound Level Meter	NTi Audio	XL2	1	A2A-17638-E0
Sound Level Meter	SVANTEK	971	1	C119577
Sound Level Meter	Rion	NL-53	1	01130784
Acoustic Calibrator	Rion	NC-74	1	34615222

3.5 Maintenance and Calibration

- 3.5.1 Maintenance and calibration procedures are as follows:
 - The microphone head of the sound level meter and calibrator were regularly cleaned with a soft cloth; and
 - The sound level meter and acoustic calibrator were calibrated annually; and
 - The accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency immediately prior to and following each noise measurement. Measurements were accepted as valid only if the calibration level from before and after the noise measurement agree to within 1.0 dB.

3.6 Action and Limit Levels

3.6.1 The Action and Limit levels were established in accordance with the Updated EM&A Manual (Apr 2022). **Table 3.4** presents the Action and Limit Levels for construction noise. Should non-compliance of the criteria occur, action in accordance with the Event and Action Plan presented in **Appendix 3.3** shall be carried out.

Table 3.4 Action and Limit Levels for Construction Noise Monitoring

Time Period	Action	Limit Level
07:00 – 19:00 on normal weekdays	When one or more documented complaints are received	75 dB(A) ⁽¹⁾

Notes:

3.7 Results and Observations

- 3.7.1 All air quality monitoring was conducted as scheduled in the reporting period. The air quality monitoring schedule for this reporting period is shown in **Appendix 1.4**.
- 3.7.2 No Action or Limit levels exceedance was recorded in the reporting period. Details of the results and graphical presentation are shown in **Appendix 3.2**. The construction noise monitoring results are summarized in **Table 3.5**.

Table 3.5 Summary of Construction Noise Monitoring Results in related to the works contracts in the reporting period

Date	Measured Noise Level: L _{eq(30min),} dB(A)	Measured Noise Level with façade correction: L _{eq(30min),} dB(A) ⁽¹⁾	Baseline Level, dB(A)	Construction Noise Level: L _{eq(30min),} dB(A) ⁽³⁾
CM1 ⁽¹⁾				
08/08/2025	67.6	70.6	58.7	70.4
16/08/2025	59.2	62.2	58.7	59.5
19/08/2025	57.1	60.1	58.7	54.5
25/08/2025	55.9	58.9	58.7	46.3
CM2 (1)				
08/08/2025	59.9	62.9	64.2	62.9 measured level ≤ baseline level
16/08/2025	68.5	71.5	64.2	70.6
19/08/2025	69.7	72.7	64.2	72.0
25/08/2025	67.1	70.1	64.2	68.8
CM3 ⁽¹⁾				
08/08/2025	65.6	68.6	71.5	68.6 measured level ≤ baseline level
16/08/2025	66.7	69.7	71.5	69.7 measured level ≤ baseline level
19/08/2025	67.3	70.3	71.5	70.3 measured level ≤ baseline level
25/08/2025	66.3	69.3	71.5	69.3 measured level ≤ baseline level
CM4a ⁽¹⁾				
08/08/2025	69.1	72.1	75.0	72.1 measured level ≤ baseline level
16/08/2025	61.1	64.1	75.0	64.1 measured level ≤ baseline level
19/08/2025	59.0	62.0	75.0	62.0 measured level ≤ baseline level
25/08/2025	57.8	60.8	75.0	60.8 measured level ≤ baseline level

⁽¹⁾ Between 07:00 and 19:00, construction noise limit for school during normal term time is 70 dB(A) and 65 dB(A) during examination period.

Date	Measured Noise Level: L _{eq(30min),} dB(A)	Measured Noise Level with façade correction: L _{eq(30min),} dB(A) ⁽¹⁾	Baseline Level, dB(A)	Construction Noise Level: L _{eq(30min),} dB(A) ⁽³⁾
CM9 (2)				
06/08/2025	64.0	-	47.7	63.9
12/08/2025	63.7	-	47.7	63.6
18/08/2025	63.8	-	47.7	63.7
29/08/2025	62.2	-	47.7	62.0
CM10 (2)				
08/08/2025	58.9	-	60.9	58.9 measured level ≤ baseline level
16/08/2025	60.3	-	60.9	60.3 measured level ≤ baseline level
19/08/2025	63.6	-	60.9	60.3
25/08/2025	61.6	-	60.9	53.2
CM11 (1)				
06/08/2025	63.3	66.3	71.5	66.3 measured level ≤ baseline level
12/08/2025	63.7	66.7	71.5	66.7 measured level ≤ baseline level
18/08/2025	62.0	65.0	71.5	65.0 measured level ≤ baseline level
29/08/2025	63.5	66.5	71.5	66.5 measured level ≤ baseline level
CM12 (1)				
06/08/2025	55.2	58.2	51.6	57.1
12/08/2025	53.8	56.8	51.6	55.2
18/08/2025	53.2	56.2	51.6	54.4
29/08/2025	55.9	58.9	51.6	58.1
CM13				
08/08/2025	53.2	-	54.4	53.2 measured level ≤ baseline level
16/08/2025	49.7	-	54.4	49.7 measured level ≤ baseline level
19/08/2025	55.2	-	54.4	47.7
25/08/2025	52.0	-	54.4	52.0 measured level ≤ baseline level
CM14 (1)				
08/08/2025	56.5	59.5	47.4	59.2
16/08/2025	55.0	58.0	47.4	57.6
19/08/2025	56.6	59.6	47.4	59.4
25/08/2025	54.3	57.3	47.4	56.8
CM15a ⁽¹⁾				
08/08/2025	71.8	74.8	64.7	74.3
16/08/2025	69.6	72.6	64.7	71.8
19/08/2025	66.8	69.8	64.7	68.2
25/08/2025	67.2	70.2	64.7	68.7
CM16				
08/08/2025	54.8	<u>-</u>	71.9	54.8 measured level ≤ baseline level
16/08/2025	61.3	-	71.9	61.3 measured level ≤ baseline level
19/08/2025	60.7	-	71.9	60.7 measured level ≤ baseline level
25/08/2025	64.3	-	71.9	64.3 measured level ≤ baseline level
CM17a ⁽¹⁾				
06/08/2025	54.0	57.0	57.2	57.0 measured level ≤ baseline level
11/08/2025	50.9	53.9	57.2	53.9 measured level ≤ baseline level
18/08/2025	53.0	56.0	57.2	56.0 measured level ≤ baseline level

Date	Measured Noise Level: L _{eq(30min),} dB(A)	Measured Noise Level with façade correction: Leq(30min), dB(A) ⁽¹⁾	Baseline Level, dB(A)	Construction Noise Level: L _{eq(30min),} dB(A) ⁽³⁾
CM18 (1)				
08/08/2025	47.4	50.4	56.6	50.4 measured level ≤ baseline level
16/08/2025	53.0	56.0	56.6	56.0 measured level ≤ baseline level
19/08/2025	49.7	52.7	56.6	52.7 measured level ≤ baseline level
25/08/2025	51.5	54.5	56.6	54.5 measured level ≤ baseline level
CM19 (1)				
06/08/2025	52.1	55.1	48.4	54.0
11/08/2025	48.0	51.0	48.4	47.5
18/08/2025	50.0	53.0	48.4	51.2
29/08/2025	49.4	52.4	48.4	50.2
CM20 (1)				
08/08/2025	50.5	53.5	57.8	53.5 measured level ≤ baseline level
16/08/2025	52.2	55.2	57.8	55.2 measured level ≤ baseline level
19/08/2025	53.4	56.4	57.8	56.4 measured level ≤ baseline level
25/08/2025	53.6	56.6	57.8	56.6 measured level ≤ baseline level

Note:

- For Free Field measurement, +3 dB(A) was added to the measured results.
- (1) (2) Between 07:00 and 19:00, construction noise limit for school during normal term time is 70 dB(A) and 65 dB(A) during examination period.
- The measured noise level was corrected with the corresponding baseline noise level erasing any non-project related noise from the background (e.g. traffic noise, etc.) recorded during the monitoring periods.
- During the construction noise monitoring period, road traffic noise may potentially affect the 3.7.3 results obtained from CM1, CM2, CM3, CM4a, CM9, CM10, CM11, CM12, CM13 CM14, CM15a, CM16, CM17a, CM18, CM19 and CM20.

3.8 Event and Action Plan

Should non-compliance of the noise monitoring criteria occur, actions in accordance with the 3.8.1 Event and Action Plan in Appendix 3.3 shall be carried out.

4 Water Quality

4.1 Monitoring Requirement

- 4.1.1 In accordance with the Updated EM&A Manual (Apr 2022), impact water quality monitoring should be carried out three days per week at all designated monitoring stations during the construction period. The interval between two sets of monitoring should not be less than 36 hours.
- 4.1.2 Replicate *in-situ* measurements of dissolved oxygen (DO), temperature, turbidity, pH, and suspended solids (SS) for each independent sampling event shall be collected to ensure a robust statistically interpretable database.

4.2 Monitoring Location

4.2.1 Impact water quality monitoring in related to the works contracts in the reporting period was conducted at 12 monitoring stations which is summarized in **Table 4.1**. The location of water quality monitoring stations is shown in **Figure 4.1**.

Table 4.1 Summary of Impact Water Quality Monitoring Stations in related to the works contracts in the reporting period

Fresh Water System	Monitoring	Coordinate	Description (1)	
	Station ID	Easting	Northing	
TSW Main Channel and its	U2	816240	834009	U
tributaries	U3a ⁽²⁾	816250	832923	U
	U4a ⁽²⁾	816151	832474	U
	U5a ⁽²⁾	816212	832138	U
	U6a ⁽²⁾	817666	832421	U
	TS1	816815	832297	G
	TS2a ⁽²⁾	817278	833493	G
	STa ⁽²⁾	816836	833253	G
	TSR1a (2)	817786	834125	G
	HT	816866	834314	G
	LUTa ⁽²⁾	817547	834717	G
	D2a ⁽²⁾	817483	835855	I
Tuen Mun River	D3	816437	831500	I
Upstream / Tributaries of	D5b ⁽³⁾	819235	832442	I
Shan Pui River (4)	D6a ⁽²⁾	818934	832032	I

Notes:

- (1) G: Gradient Station; I: Impact Station; U: Upstream Station.
- (2) U3a, U4a, U5a, U6a, TS2a, STa, TSR1a, LUTa, D2a and D6a are the alternative water quality monitoring stations to replace U3, U4, U5, U6, TS2, ST, TSR1, LUT, D2 and D6, respectively, in accordance with the agreed Proposal of Alternative Monitoring Locations that was approved by EPD on 18 November 2024.
- (3) D5b is the alternative water quality monitoring stations to replace D5a, in accordance with the agreed Proposal of Alternative Monitoring Locations that was approved by EPD on 8 April 2025.
- (4) The original monitoring station (i.e. U7) had been cancelled owing to the location was on a steep slope within densely vegetated area in which no water flowing through in wet season in accordance with the Proposal of Alternative Monitoring Locations.

4.3 Monitoring Parameter and Frequency

4.3.1 The monitoring parameters, frequency and duration of impact water quality monitoring are listed in **Table 4.2**.

Table 4.2 Parameters measured in the Impact Water Quality Monitoring

Parameter	Frequency	Duration
Dissolved oxygen (DO), temperature, turbidity, pH, stream water depth and suspended solids (SS)	3 days in a week	Throughout the construction phase

4.3.2 Monitoring location and position, time, sampling depth, weather conditions and any special phenomena or work underway nearby are recorded during the impact monitoring.

4.4 Sampling Depths & Replication

- 4.4.1 During impact water quality monitoring, each station was sampled. Due to a shallow water depth (less than 3 m) with low flow rates in rivers, all the monitoring would be located at mid-depth level.
- 4.4.2 Duplicate water samples were collected at each sampling depth for laboratory measurement of SS. Samples were stored in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Monitoring Equipment

4.5.1 The measurement of DO, temperature, turbidity, pH and stream water depth were undertaken *in-situ*. *In-situ* monitoring instruments in compliance with the specifications listed under Section 6.8 of the Updated EM&A Manual (Apr 2022) were adopted to undertake the water quality monitoring for the Project. Water quality monitoring equipment with the following specifications shall be supplied and maintained by the ET.

<u>Dissolved Oxygen and Temperature Measuring Equipment</u>

- 4.5.2 The instrument for measuring dissolved oxygen and temperature should be portable and weatherproof complete with cable, sensor, and use DC power source. The equipment was capable of measuring:
 - A dissolved oxygen level in the range of 0 50 mg/L and 0 500% saturation; and
 - The temperature within -5 50 °C.
- 4.5.3 It should have a membrane electrode with automatic temperature compensation connected with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary (e.g. YSI ProDSS (multi-parameters) or an approved similar instrument).

4.5.4 pH meter (e.g. YSI ProDSS (multi-parameters) or equivalent) should be used to measure pH value of water samples *in-situ*. It should be readable in a range of 0 to 14. Standard buffer solutions of at least pH 7 to pH 10 shall be used for calibration of the instrument before and after use.

Turbidity Measurement Equipment

4.5.5 The instrument should be a portable, weatherproof turbidity-measuring instrument with a comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 – 4000 NTU and be equipped with a cable (e.g. YSI ProDSS (multi-parameters) or an approved similar instrument).

Suspended Solids

- 4.5.6 A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, and should be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Wildco 2.2L Water Sampler or an approved similar instrument).
- 4.5.7 Water samples for suspended solids measurement shall be collected in high density polythene bottles, packed in ice (chilled to 4 °C without being frozen), and delivered to the laboratory as soon as possible after collection.

Water Depth Detector

- 4.5.8 A portable, battery-operated echo sounder should be used for determining water depth at each designated monitoring station.
- 4.5.9 For shallow water (less than 1 m deep), a portable water depth ruler in a range 0 7m should be used to measure water depth.

Monitoring Position Equipment

4.5.10 A hand-held or boat-fixed digital Global Positioning System (GPS) or other equivalent instrument of similar accuracy shall be provided and used during water quality monitoring to ensure the water sampling locations are correct during water quality monitoring work.

Water Sampling Equipment

- 4.5.11 A transparent PVC or glass cylinder, which has a volume of not less than 2 litres and can be sealed at both ends with cups, should be equipped with a positive latching system. During the water sampling, a messenger is released to trigger the closure of the water sampler at suitable water depth.
- 4.5.12 For sampling location with shallow water depth, plastic bucket would be used instead.

Calibration of *In-situ* Instruments

4.5.13 All in-situ monitoring instruments should be checked, calibrated and certified by a laboratory accredited under HOKLAS or another international accreditation scheme before use, and subsequently re-calibrated at 3-monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter should be carried out before measurement at each monitoring location.

Back-up Equipment

- 4.5.14 Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterruptedly even when some equipment is under maintenance, calibration, etc.
- 4.5.15 **Table 4.3** summarizes the equipment used in the water quality monitoring programme. Copies of the calibration certificates of multi-parameter water quality monitoring system are shown in **Appendix 4.1**.

Table 4.3 Water Quality Monitoring Equipment

Equipment	Model	Quantity	Serial No.	Parameter	Range	Accuracy
Water Sampler	Wildco 2.2L Water Sampler with messenger or plastic bucket (used in shallow water depth)	1	N/A	N/A	N/A	N/A
	YSI ProDSS (multi- parameters)	2	15M101091 22C106561		0 to 500%	0 to 200%: ±1% of reading200 to 500%: ±8% of reading
Multi- functional Water Quality Meter				Dissolved Oxygen (DO)	0 to 50 mg/L	0 to 20 mg/L: ±0.1 mg/L or 1% of reading, whichever is greater 20 to 50 mg/L: ±8% of reading
				Temperature	-5 to 50 °C	±0.2 °C

Equipment	Model	Quantity	Serial No.	Parameter	Range	Accuracy
				рН	0 to 14 pH units	±0.2 pH units
				Turbidity	• 0 to 999 NTU NTU or ±29 reading, whichever greater • 1000 to NTU: ±5% reading	
Water Depth Ruler	鼎峯 0708	1	NA*	Water depth	0 – 7 m (Used for water depth less than 1 m)	±0.01 m
Positioning Equipment	Garmin (GPSmap 78s)	1	1WL223754	Positioning	N/A	GPS: ±1m

4.6 Monitoring Methodology

- 4.6.1 Water samples were collected at an appropriate water depth using a sealable transparent PVC or glass cylinder. For locations with shallow water depth, a plastic bucket was used as an alternative. Usually, water was then transferred to the sample bottles until they were filled to the top with no remaining air space before the lid was securely screwed on.
- 4.6.2 Multi-functional water quality meters were checked, calibrated and certified by Quality Pro Test-Consult Limited (HOKLAS reg no. 259) before use, and would be subsequently re-calibrated at 3-monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter should be carried out before measurement at each monitoring location. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment should also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.6.3 Water samples for suspended solids measurement were collected in high density polythene bottles, packed in ice (chilled to 4 °C being frozen), and delivered to the laboratory as soon as possible after collection.
- 4.6.4 Water sampling equipment deployed during the monitoring programme was decontaminated by manual washing and rinsed with clean distilled water after each sampling location.
- 4.6.5 All sampling bottles were labelled with the sample ID (including the indication of sampling station), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4 °C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory. The laboratory determination works started within 24 hours after collection of water samples.

Laboratory Analytical Methods

4.6.6 Analysis of SS was carried out by a HOKLAS accredited laboratory (Acumen Laboratory and Testing Limited). At least two replicate samples from each independent sampling event were collected for the SS measurement. Sufficient water samples (about 3,000 mL) were collected at the monitoring stations for carrying out the laboratory SS determination. The analytical method for suspended solids is presented in **Table 4.4**.

Table 4.4 Method for Laboratory Analysis for Water Samples

Parameters	Analytical Method	Detection Limit
Suspended Solid (SS)	APHA 2540D (1)	1 mg/L

Note:

(1) APHA American Public Health Association Standard Methods for the Examination of Water and Wastewater.

4.7 QA/QC Requirements

Decontamination Procedures

4.7.1 Water sampling equipment used during the course of the monitoring process was decontaminated by manual washing and rinsed with distilled water after each sampling event. All of the disposable components/ accessories were discarded after sampling.

Sampling Management and Supervision

4.7.2 All sampling bottles were labelled with the sample ID numbers (including the sampling station), and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible. All the collected samples were stored in a cool box to keep the temperature less than 4 as possible after the sampling. All samples were stored in a cool box and kept at less than 4 °C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

Quality Control Measures for Sample Testing

- 4.7.3 Quality control of laboratory analysis of water samples was performed by Acumen Laboratory and Testing Limited for every batch of 20 samples:
 - A minimum of 1 laboratory method blank was analyzed;
 - A minimum of 1 sample duplicate was analyzed; and
 - A minimum of 1 sample matrix spike was analyzed.

4.8 Action and Limit Level for Water Quality Monitoring

4.8.1 The criteria of action and limit levels for water quality monitoring are defined in Table 4.5.

Table 4.5 Action and Limit Levels for Water Quality

Parameters	Action Level	Limit Level
DO in mg/L	< 5%-ile of baseline data	< 4 mg/L or < 1%-ile of baseline data
SS in mg/L	> 95%-ile of baseline data	> 99%-ile of baseline data
Turbidity in NTU	> 95%-ile of baseline data	> 99%-ile of baseline data
рН	Beyond the range 6.6 to 8.4	Beyond the range of 6.5 to 8.5

Notes:

- (1) For DO, non-compliance of the water quality limit occurs when monitoring result is lower than the limit.
- (2) For SS and turbidity, non-compliance of the water quality limit occurs when monitoring result is higher than the limit.
- (3) All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered necessary.

4.8.2 Based on the criteria listed in **Table 4.5**, the action and limit levels for water quality are determined in **Table 4.6**.

Table 4.6 Action and Limit Levels of Water Quality

Fresh Water System	Monitoring Station ID	Parameters	Action	Limit	
TSW Main Channel and its	D2a	DO in mg/L	5.4	4 (1)	
tributaries		SS in mg/L	14.0	15.6	
		DO in mg/L 5.4 SS in mg/L 14.0 Turbidity in NTU 11.6 pH Less than 6.6 or greater than 8.4 Les greater than 8.4 DO in mg/L 4.9 SS in mg/L 59.4 Turbidity in NTU 10.8 pH Less than 6.6 or greater than 8.4 greater than 8.4 DO in mg/L 5.2 SS in mg/L 27.5 Turbidity in NTU 19.3 pH Less than 6.6 or greater than 8.4 greater than 8.4 DO in mg/L 6.9 SS in mg/L 16.3 Turbidity in NTU 14.8 pH Less than 6.6 or Less than 6.6	11.7		
		рН		Less than 6.5 or greater than 8.5	
Tuen Mun River	D3	DO in mg/L	4.9	4 (2)	
		SS in mg/L	## Property of the property of	67.4	
		Turbidity in NTU	10.8	11.1	
		рН		Less than 6.5 or greater than 8.5	
Upstream / Tributaries of	D5b	DO in mg/L	5.2	4 (3)	
Shan Pui River ⁽⁴⁾		SS in mg/L 59.4 Turbidity in NTU 10.8 pH Less than 6. greater than DO in mg/L 5.2 SS in mg/L 27.5 Turbidity in NTU 19.3	27.5	264.3	
		Turbidity in NTU	19.3	19.4	
		рН		Less than 6.5 or greater than 8.5	
	D6a	DO in mg/L	6.9	4 (4)	
		SS in mg/L	16.3	18.3	
		Turbidity in NTU	14.8	14.9	
		рН		Less than 6.5 or greater than 8.5	

Notes:

- (1) The 1%-ile of baseline DO data at D2a is 5.4 mg/L, which is higher than 4 mg/L. Thus, DO concentration of 4 mg/L, which is in line with the Water Quality Objectives, is adopted as the limit level.
- (2) The 1%-ile of baseline DO data at D3 is 4.8 mg/L, which is higher than 4 mg/L. Thus, DO concentration of 4 mg/L, which is in line with the Water Quality Objectives, is adopted as the limit level.
- (3) The 1%-ile of baseline DO data at D5b is 5.1 mg/L, which is higher than 4 mg/L. Thus, DO concentration of 4 mg/L, which is in line with the Water Quality Objectives, is adopted as the limit level.
- (4) The 1%-ile of baseline DO data at D6a is 6.9 mg/L, which is higher than 4 mg/L. Thus, DO concentration of 4 mg/L, which is in line with the Water Quality Objectives, is adopted as the limit level.

4.9 Results and Observations

- 4.9.1 The water quality monitoring schedule for this reporting period is shown in **Appendix 1.4**. The monitoring results and graphical presentation of water quality monitoring at the monitoring stations are shown in **Appendix 4.2**.
- 4.9.2 As the Black Rainstorm Warning Signal was issued on 5 August 2025, the water quality monitoring event that was originally scheduled on 5 August 2025 had been cancelled due to safety reasons and unstable weather condition. No Action or Limit Level exceedance was recorded during impact water quality monitoring in the reporting period. Summary of exceedance records are shown in **Table 4.7**.

Table 4.7 Summary of Exceedance Records of Water Quality Monitoring in related to the works contracts in the reporting period

Parameter	No. of exceedances		No. of non- project Total No. related exceedances exceedances		Total No. of non-project related	No. of exceedance related to the Project		Total No. of exceedance related to	
	AL	LL		AL	LL	exceedances	AL	LL	the Project
Dissolved Oxygen	0	0	0	0	0	0	0	0	0
Turbidity	0	0	0	0	0	0	0	0	0
Suspended Solids	0	0	0	0	0	0	0	0	0
pН	0	0	0	0	0	0	0	0	0

4.10 Event and Action Plan

4.10.1 Should any non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix 4.4** shall be followed. Investigation of the exceedances of environmental quality performance limits should be conducted, and the ET will immediately notify the IEC and EPD, as appropriate. The notification should be followed up with advice to the IEC and EPD on the results of the investigation, proposed actions and success of the action taken, with any necessary follow-up proposals.

5 Waste Management

5.1.1 Waste generated from the Project include inert construction and demolition (C&D) materials and non-inert C&D wastes in the reporting period. The summarized amount of waste generated by the construction works in related to the works contracts in the reporting period is shown in **Table 5.1** respectively. The cumulative waste flow table of the Project was presented in in **Appendix 5.1**.

Table 5.1 Summary of Waste Generated by the Construction Works in related to the Works Contracts in the Reporting Period

Qu	Total	Actual Quantalities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly				
	Quantity Generated	Hard Rock and Lage Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Carboard Packing	Plastics	Chemical Waste	Others e.g., general refuse
	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m ³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)
June 2025	5.45	0.00	0.00	4.71	0.00	0.00	0.00	0.00	0.00	0.00	0.74
July 2025	1.86	0.00	0.00	1.61	0.00	0.00	0.00	0.00	0.00	0.00	0.24
August 2025 (2)	6.72	0.00	0.00	6.26	0.00	0.00	0.00	0.00	0.00	0.00	0.46

⁽¹⁾ As the amount of C&D Wastes (Others e.g., general refuse) generated by Contract 2 in July 2025 has been updated, the total quantity of waste generated by Contract 1 and Contract 2 in July 2025 has been updated accordingly.

- 5.1.2 Sorting of construction and demolition (C&D) materials was carried out on site. Sufficient numbers of receptacles were provided for general refuse collection and sorting. Excavated inert C&D materials were reused to minimize the disposal of C&D waste to public fill.
- 5.1.3 The Contractor is advised to minimize the wastes generated through recycling or reusing. All applicable mitigation measures stipulated in the Updated EM&A Manual (Apr 2022) and waste management plans will be fully implemented.

⁽²⁾ As the construction phase EM&A programme of Contract 3 started on 4 August 2025, the waste generated by Contract 1 to Contract 3 is included in the cumulative waste flow table of the Project starting from August 2025.

6 Ecology

6.1 Monitoring and Audit Requirements

6.1.1 According to the Updated EM&A Manual (Apr 2022), all sites of conservation importance are either located outside the proposed development area or retained in situ under the "Green Belt" ("GB") zoning, except a small strip of "CA" comprising of 0.1 ha would be affected under the construction of slip road under DP12. Mitigation measures recommended in the EIA Report as the audit requirements including, preservation of existing bat species, installation of decorative screen hoarding and management of construction activities and facilities are summarized in **Appendix 1.3**. The monitoring and audit requirements in accordance with the Updated EM&A Manual (Apr 2022) are stated below.

Audit Requirement

- 6.1.2 Site audits should be undertaken monthly during the construction phase of the Project to check the proper implementation and maintenance of recommended mitigation measures.
- 6.1.3 Site hoardings and fences should be checked regularly by the ET. Damage sighted should be reported to the site manager and damaged site hoarding/fence should be repaired by the Contractor as soon as possible.
- 6.1.4 Site inspection should be carried out to ensure the site formation and construction works within 100m from the boundary of the HSK egretry are not undertaken during the breeding season of ardeids, i.e. between March and August. Site inspection should be undertaken by the ET regularly to check the implementation of standard good site practices.

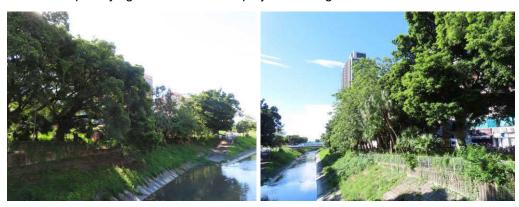
Monitoring Requirement

- 6.1.5 During the construction phase, the HSK egretry would be monitored monthly during the ardeid breeding season (March to August) by qualified ecologists with at least 10 years of relevant local experience. This is to confirm if the egretry is still active during the breeding season and if the egretry is significantly disturbed (e.g., physical damage to nesting substrate or pollution of any kind) by the construction activities. In addition, no site formation and construction works should be done within 100m from the boundary of the HSK egretry during the breeding season of ardeids (March to August).
- 6.1.6 As the Incense Tree individual is recommended to be preserved in situ together with Tung Tau Tsuen woodland, site audit should be done to ensure that the construction work does not encroach into the woodland.

6.1.7 The construction programme of the four (foot and cycle) bridges would be phased to create disturbance-free region on TSW Main Channel during the construction phase. Construction method and sequence would also be carefully designed to minimise potential disturbance impact including water quality, noise and dust to the channel. Regular site audit would be done to guarantee that the mitigation measures would be implemented correctly.

6.2 Results and Observations

6.2.1 During the site audits that were undertaken in the reporting period, proper implementation and maintenance of the recommended mitigation measures in the EIA were checked.


Egretry Monitoring

- 6.2.2 Egretry survey would be carried once during each reporting period that falls in the breeding season (i.e. between March and August) of the ardeids. Egretry survey would be carried out on the egretry and 100m from the egretry maximum extent at the HSK egretry. Active nests, determined by the presence of incubating adults or chicks would be counted directly by using 8-10x binoculars or by naked eyes, depending on the proximity between the surveyor and the colony. Number of active nest and tree species are the monitoring parameters applied during this reporting period.
- 6.2.3 As the reporting period falls in the breeding season (i.e. between March and August) of the ardeids, site inspection on ecological impact was carried out on 22 August 2025 and was only focus on the egretry and 100m from the egretry maximum extent as illustrated in **Figure 6.1** and **Figure 6.2**.
- 6.2.4 During the egretry survey on 22 August 2025, the HSK Egretry remains active in breeding season 2025. A total of 3 active nests of Little Egret were recorded at trees on both sides of the drainage channel. Two tree species have been utilized as nesting substrate, *Ficus microcarpa* and *Melaleuca cajuputi* subsp. *Cumingiana*.
- 6.2.5 Pipe laying works of another project at Hung Shui Kiu Main Street has commenced on 29 April 2025 and it is expected to complete on 14 July 2027. Increased noise and heavy vehicles were observed but the egretry has not been significantly disturbed by the pipe laying works.
- 6.2.6 No site formation and construction works under HSK/HT NDA Second Phase Development, has been commenced within 100m from the boundary of the HSK egretry. The works that should not be conducted within 100m from the boundary of the HSK egretry during the breeding season of the ardeids are as illustrated in **Figure 6.1** and **Figure 6.2**.
- 6.2.7 Photo(s) of the site condition(s) where the egretry survey was undertaken on 22 August 2025 are presented in **Plate 6.1**. The status and representative photo of each active nest recorded are detailed in **Table 6.1**.

Plate 6.1 Site Condition(s) of Egretry Survey during the Reporting Month

Pipe Laying Works of another project at Hung Shui Kiu Main Street

The full view of the colony / trees utilized by ardeids on both sides of the drainage channel.

Table 6.1 The status and representative photo of each active nest recorded at the Hung Shui Kiu Egretry during the Reporting Period

	Sharkia Egretty during the Reporting Feriod								
No.	Ardeid Species	Nesting Substratum	Key observations	Representative Photo					
1	Little Egret	Melaleuca cajuputi subsp. Cumingiana	1 fledgling nearby						
2	Little Egret	Melaleuca cajuputi subsp. Cumingiana	1 fledgling nearby						

No.	Ardeid Species	Nesting Substratum	Key observations	Representative Photo
3	Little Egret	Melaleuca cajuputi subsp. Cumingiana	2 nestlings	

Bat Roost Survey

6.2.8 During the reporting period, bat roost survey for precautionary check were carried out for the works contracts. In the reporting period, bat roost surveys for Contract 2 were carried out on 8 and 20 August 2025; bat roost survey for Contract 3 was carried out on 22 Aug 2025. The details of the bat roost survey at Contract 2 and Contract 3 during the reporting period are summarized in **Table 6.2** and **Table 6.3** respectively.

Table 6.2 Schedule for Bat Roost Survey at Contract 2 during the Reporting Period

Survey Date	Findings observed during the survey
8-Aug-2025	No bat roost was identified.
20-Aug-2025	No bat roost was identified.

Table 6.3 Schedule for Bat Roost Survey at Contract 3 during the Reporting Period

Survey Date	Findings observed during the survey
22-Aug-2025	No bat roost was identified.

6.2.9 The schedule of the upcoming bat roost survey at Contract 2 in the next reporting period are summarized in **Table 6.4**.

Table 6.4 Upcoming Schedule for Bat Roost Survey at Contract 2 in the Next Reporting Period

	Survey Date ⁽¹⁾
1 st Survey	1-Sep-25
2 nd Survey	12-Sep-25
3 rd Survey	24-Sep-25

Notes:

(1) The schedule may be updated depends on tell-felling progress or adverse weather condition.

7 Landscape and Visual

7.1 Audit Requirements

7.1.1 According to the Updated EM&A Manual (Apr 2022), site audits should be undertaken at least once every two weeks during the construction period, by a Registered Landscape Architect (RLA). Particularly, to check that the proposed landscape and visual mitigation measures are properly implemented and maintained as per their intended objectives. Mitigation measures recommended in the EIA Report as the audit requirements including, preservation of existing vegetation, transplanting of affected trees, compensatory tree planting, control of night-time lighting glare, erection of decorative screen hoarding and management of construction activities and facilities are summarized in **Appendix 1.3**.

7.2 Results and Observations

7.2.1 Bi-weekly landscape and visual site audits at Contract 1 were carried out by a Registered Landscape Architect (RLA) on 15 and 28 August 2025. Bi-weekly landscape and visual site audits at Contract 2 were carried out by a Registered Landscape Architect (RLA) on 1, 15 and 29 August 2025. Bi-weekly landscape and visual site audits at Contract 3 were carried out by a Registered Landscape Architect (RLA) on 6 and 20 August 2025. No deficiency in practices were identified in this reporting period.

7.3 Event and Action Plan

7.3.1 Should any non-compliance of the criteria occur, action in accordance with the Event and Action Plan in **Appendix 7.1** shall be followed.

8 Environmental Site Inspection and Audit

8.1 Implementation Status of Environmental Mitigation Measures

- 8.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections at Contract 1 were carried out on 7, 15, 22 and 28 August 2025. Site inspections at Contract 2 were carried out on 1, 8, 15, 22 and 29 August 2025. Site inspections at Contract 3 were carried out on 6, 13, 20 and 27 August 2025.
- 8.1.2 Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections at Contract 1 and during the reporting period are summarized in **Table 8.1**.

Table 8.1 Site Observations at Contract 1 during the reporting period

Table 6.1 Sit	Table 8.1 Site Observations at Contract 1 during the reporting period									
Date	Key Observation(s)/ Reminder(s)	Follow-up Action								
7 August 2025	 Observation(s): CNP should be displayed at site entrance at Part T. Wastewater treatment facility checklist record should be displayed at Hung Nga Road. 	Rectified Measure(s) for Observation(s): 1. CNP was displayed at site entrance at Part T. 2. Wastewater treatment facility checklist record was displayed at Hung Nga Road.								
15 August 2025	Observation(s): 1. CNP should be displayed at site entrance at Part T. 2. Flow meter should be installed to monitor the wastewater treatment facility at Part T and Part F. 3. Gully should be provided with sand bags to prevent muddy surface runoff at Part F.	Rectified Measure(s) for Observation(s): 1. CNP was displayed at site entrance at Part T. 2. Flow meter was installed to monitor the wastewater treatment facility at Part T and Part F. 3. Gully was provided with sand bags to prevent muddy surface runoff at Part F.								
	Observation(s):									
22 August 2025	 Wastewater treatment facility should be regularly checked at Part T and Part F. Reminder(s): The Contractor was reminded to cover dusty stockpile when not in use at Part T. 	Rectified Measure(s) for Observation(s): 1. Wastewater treatment facility was regularly checked at Part T and Part F.								
28 August 2025	No major environmental deficiency was observed during the site inspection.	Nil								

8.1.3 Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections at Contract 2 and during the reporting period are summarized in **Table 8.2**.

Table 8.2 Site Observations at Contract 2 during the reporting period

Date	Key Observation(s)/ Reminder(s)	Follow-up Action
1 August 2025	No major environmental deficiency was observed during the site inspection.	Nil
8 August 2025	Reminder(s): 1. The Contractor was reminded to clean the U-channel regularly, especially after heavy raining at Service Reservoir.	Nil
15 August 2025	Reminder(s): 1. The Contractor was reminded to replaced the noise barriers wrapped on breaker head before works at Service Reservoir.	Nil
22 August 2025	Reminder(s): 1. The Contractor was reminded to provide water spraying during excavation at Service Reservoir.	Nil
29 August 2025	Reminder(s):1. Breaker head should be properly wrapped at Service Reservoir.2. Decolored NRMM label should be replaced at Service Reservoir.	Nil

8.1.4 Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections at Contract 3 and during the reporting period are summarized in **Table 8.3**.

Table 8.3 Site Observations at Contract 3 during the reporting period

Table 8.3 Site Observations at Contract 3 during the reporting period								
Date	Key Observation(s)/ Reminder(s)	Follow-up Action						
6 August 2025	Observation(s): 1. NRMM label should be displayed on excavator at Part O-1. Reminder(s): 1. The Contractor was reminded to properly set up wastewater treatment facility after obtaining water liscense at Part O-1.	Rectified Measure(s) for Observation(s): 1. The NRMM label was displayed on the excavator at part O1 properly.						
13 August 2025	Reminder(s): 1. The Contractor was reminded to revise the wastewater treatment facility checklist at Part O-1.	Nil						
20 August 2025	No major environmental deficiency was observed during the site inspection.	Nil						
27 August 2025	Observation(s): 1. Chemicals should be placed on drip tray at Part O-1.	Rectified Measure(s) for Observation(s): 1. Chemical containers were placed inside drip tray at Part O1.						

8.1.5 According to the EIA Study Report, Environmental Permit, contract documents and Updated EM&A Manual (Apr 2022), the mitigation measures detailed in the documents should be implemented as much as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix 1.3**.

9 Summary of Monitoring Exceedance, Complaints, Notification of Summons and Prosecutions

9.1 Summary of Exceedance

- 9.1.1 No Action Level or Limit Level exceedance was recorded for air quality monitoring in the reporting period.
- 9.1.2 No Action Level or Limit Level exceedance was recorded for construction noise monitoring in the reporting period.
- 9.1.3 No Action Level or Limit Level exceedance was recorded for water quality monitoring in the reporting period.

9.2 Summary of Environmental Non-Compliance

9.2.1 No environmental non-compliance was recorded in the reporting period.

9.3 Summary of Environmental Complaint

9.3.1 No environmental complaint was received in the reporting period. The Cumulative Complaint Log is presented in Appendix 9.1.

9.4 Summary of Environmental Summon and Successful Prosecution

9.4.1 There was no successful environmental prosecution or notification of summons received since the Project commencement. The Cumulative Log for environmental summon and successful prosecution is presented in **Appendix 9.1**.

10 Future Key Issues

10.1 Works and Potential Environmental Issues in the next Reporting Period

- 10.1.1 The Impact Monitoring Schedule for the Project for the next reporting period is presented in **Appendix 10.1**.
- 10.1.2 Works to be undertaken in the next reporting period are summarized below, and in **Figures 1.2 to 1.4** respectively:

Contract 1

- Underground Utility Detection;
- · Ground Investigation Works;
- Watermains Laying Works at Part F;
- · Removal of Bar Fencing;
- Excavation Works at Part T;
- Demolition of Villager's Houses;
- Tree Felling Works;
- · Construction of CLC Superstructure;
- · Demolition of Warehouses;
- · Construction of Pole Mount Transformer;
- CLC Sewerage Connection Works at Kiu Cheong Road.

Contract 2

- Tree Felling;
- Ground Investigation Works;
- General Temporary Slope Works;
- Piezometer / Standpipe Installation;
- Preparation of TTA for pipe laying;
- Pipe laying.

Contract 3

- Site Clearance;
- Pai Lau Construction;
- · Ground Investigation;
- Construction of L10 Road;
- Box Culvert excavation at Tin Ha Road;
- Construction of Temporary Nullah;
- Drainage work;
- Underground Utilities laying works.
- 10.1.3 Potential environmental impacts arising from the above construction activities are mainly associated with construction noise impact, water quality impact, ecological impact, waste management, and landscape and visual.

10.2 Recommendation

10.2.1 The key environmental mitigation measures for the Project in the coming reporting period expected to be associated with the construction activities include:

Dust

- Regular watering to reduce dust emissions from exposed site surface;
- Stockpile of dusty materials shall be covered entirely by impervious sheeting;
- Provide vehicles washing facilities at all site exits to wash away any dusty materials from vehicle body;
- NRMM Labels should be displayed on the applicable equipment on site by the Contractor;
- Provision of water sprinklers along the haul road for dust suppression.

<u>Noise</u>

- Only well-maintained plant should be operated on-site, and plant should be maintained regularly during the construction programme; and
- Quality Powered Mechanical Equipment (QPME) should be adopted as far as possible.

Water Quality

- No effluent discharge would be allowed before acquired the effluent discharge license;
- Surface run-off from construction sites should be discharged into dedicated discharge point via adequately designed sand/ silt removal facilities;
- Channels/ earth bunds/ sandbags barriers should be provided on site to properly direct stormwater to silt removal facilities;
- Silt removal facilities, channels and manholes should be maintained, and the deposited silt and grit should be removed regularly;
- Open stockpiles of construction materials on sites should be covered with tarpaulin or similar fabric during rainstorms; and

 Perimeter channels should be provided on site boundaries where necessary to intercept stormwater run-off from outside the site so that it will not wash across the site.

Waste Management

- Provision of sufficient waste disposal points and regular collection of waste;
- Regular cleaning and maintenance programme for drainage system; and
- Chemical containers shall be stored with drip tray underneath.

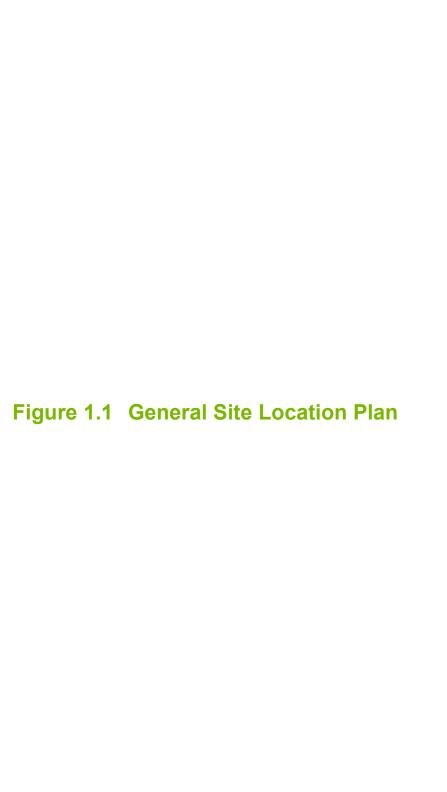
Ecological

 Construction activities should not be conducted within 100m from the boundary of the HSK egretry during the breeding season of the ardeids.

Landscape and Visual

- Site formation and construction works within 100m from the boundary of the HSK egretry should be scheduled outside the breeding season of the ardeids which occurs between March and August.
- 10.2.2 The tentative schedule of regular air quality, construction noise, water quality and egretry monitoring in the next reporting period is presented in **Appendix 10.1**. The regular impact air quality, noise and water quality monitoring will be conducted at the same monitoring locations in the next reporting period.

11 Conclusions


11.1 Conclusion

- 11.1.1 This 10th Monthly EM&A Report presents the EM&A works at Contract 1 and Contract 2 under the Project during the reporting period from 1 to 31 August 2025, and that at Contract 3 from 4 to 31 August 2025 in accordance with the Updated EM&A Manual (Apr 2022).
- 11.1.2 All air quality monitoring was conducted as scheduled in the reporting period. No Action Level or Limit Level exceedance was recorded for air quality monitoring in the reporting period.
- 11.1.3 All construction noise monitoring was conducted as scheduled in the reporting period. No Action Level or Limit Level exceedance was recorded for construction noise monitoring in the reporting period.
- 11.1.4 As the Black Rainstorm Warning Signal was issued on 5 August 2025, the water quality monitoring event that was originally scheduled on 5 August 2025 had been cancelled due to safety reasons and unstable weather condition. No Action Level or Limit Level exceedance was recorded for water quality monitoring in the reporting period.
- 11.1.5 Environmental site inspections were conducted at Contract 1 on 7, 15, 22 and 28 August 2025. Environmental site inspections were conducted at Contract 2 out on 1, 8, 15, 22 and 29 August 2025. Environmental site inspections were conducted at Contract 3 out on 6, 13, 20 and 27 August 2025.
- 11.1.6 No environmental non-compliance was recorded in the reporting period.
- 11.1.7 No environmental complaint was received in the reporting period.
- 11.1.8 No notification of summons and prosecution was received in the reporting period.
- 11.1.9 The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.
- 11.1.10 As the construction phase EM&A programme of Contract 3 started on 4 August 2025, the findings of EM&A works at Contract 3 under the Project are reported starting from this reporting period.

11.2 Comments/ Recommendations

11.2.1 The proposed mitigation measures were properly implemented and were considered effective and efficient in pollution control.

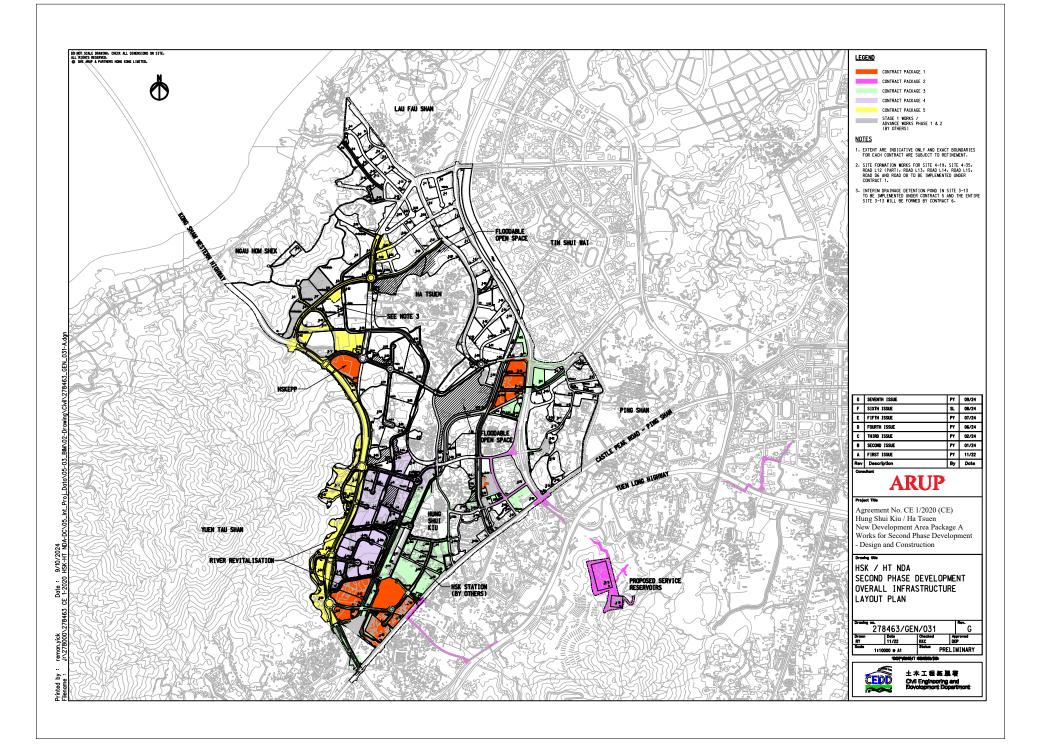


Figure 1.2 Annotated Site Drawing Presenting the Construction Activities Conducted at Contract 1 in the Reporting Period

Contract No. YL/2023/01

<u>H</u>ung Shui Kiu / Ha Tsuen New Development Area Second Phase Development – Contract 1 - Site Formation and Engineering Infrastructure Works

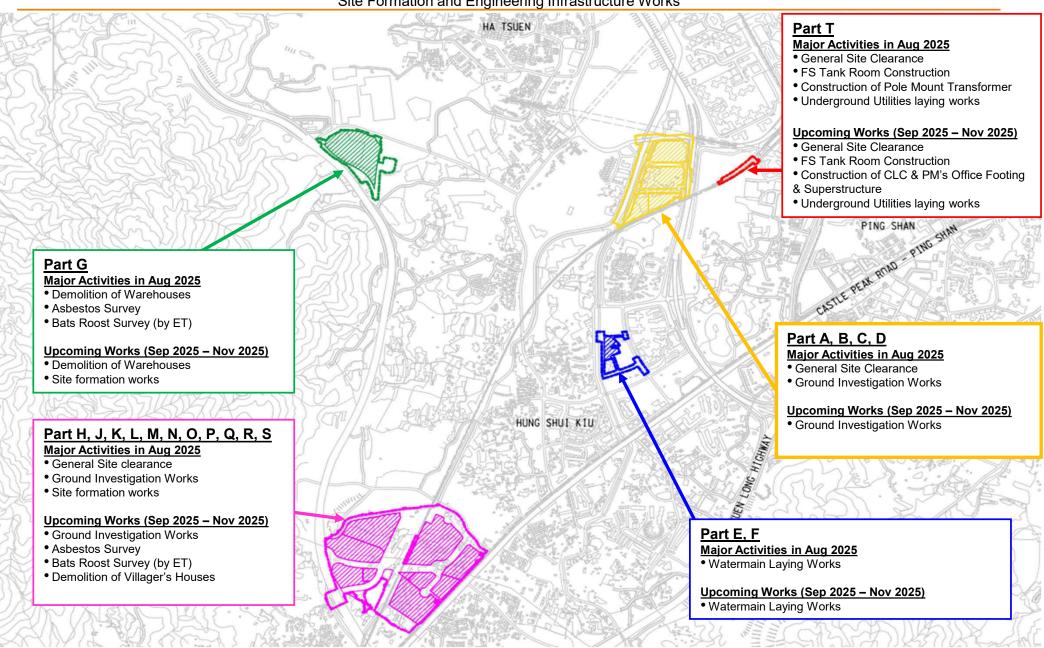
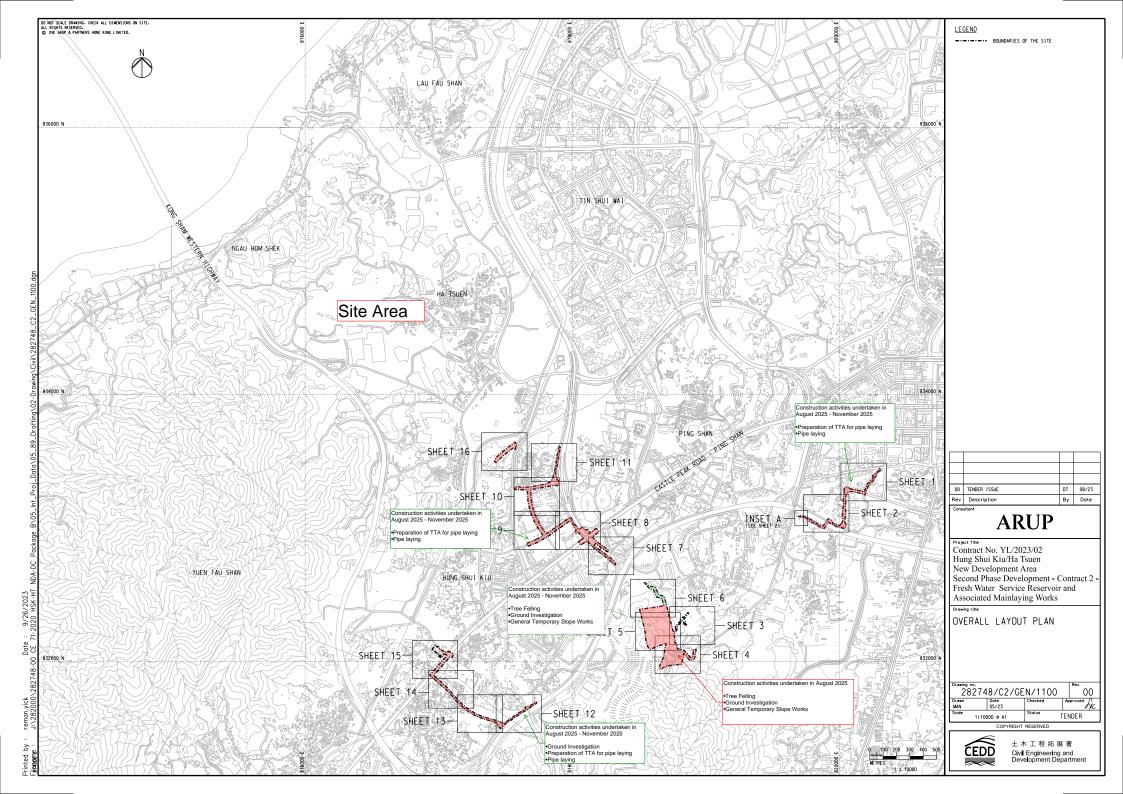
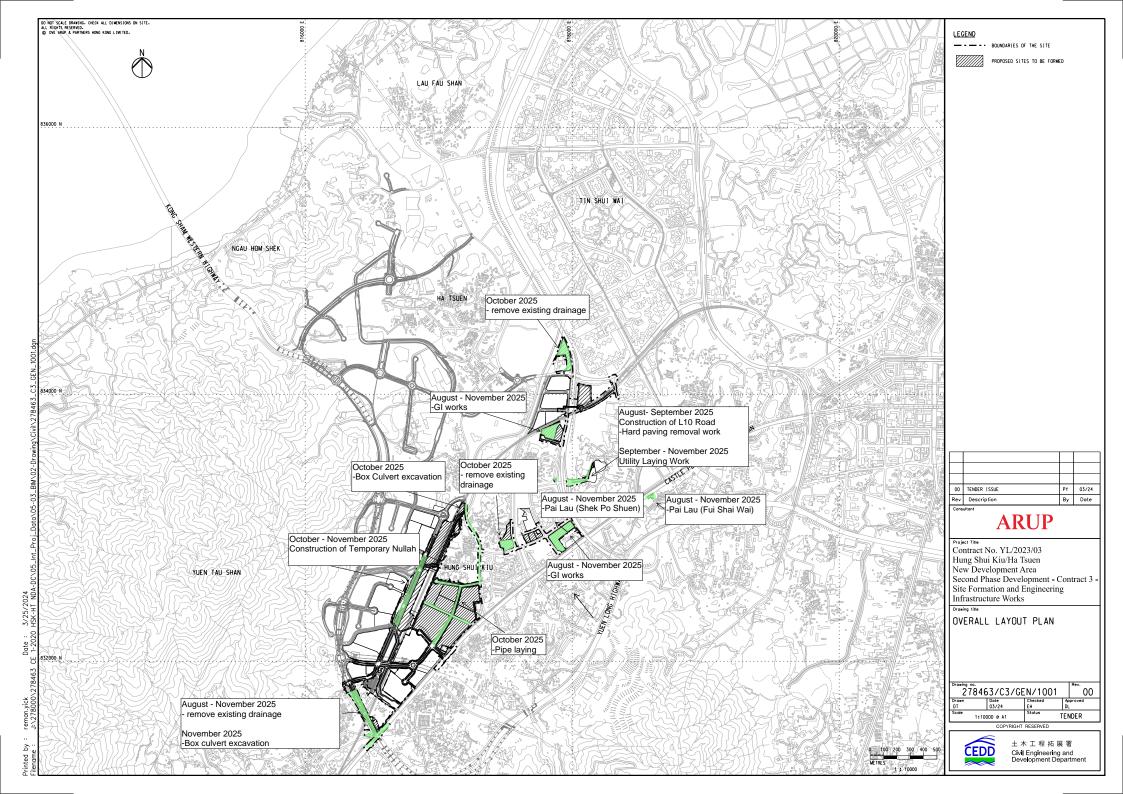
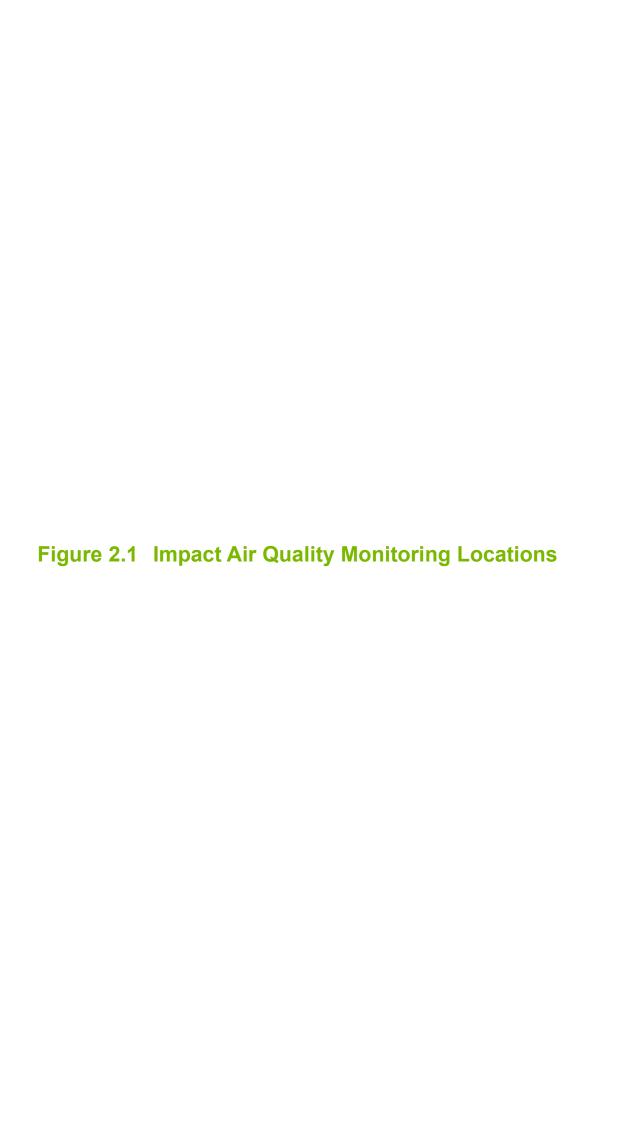
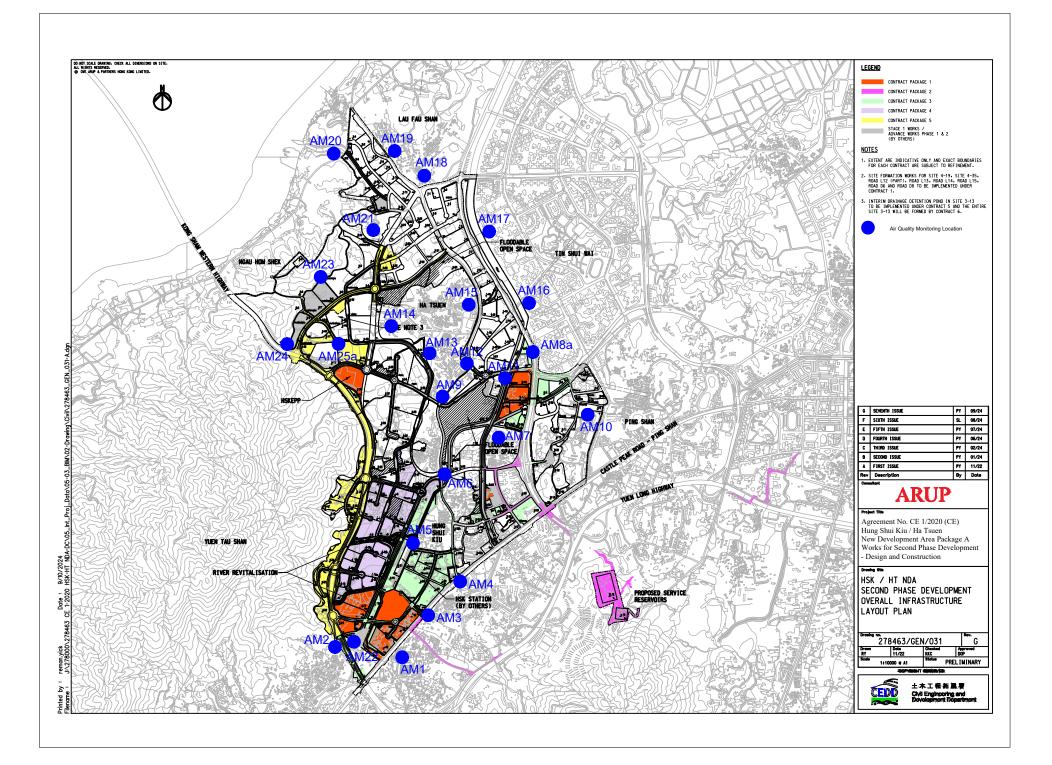
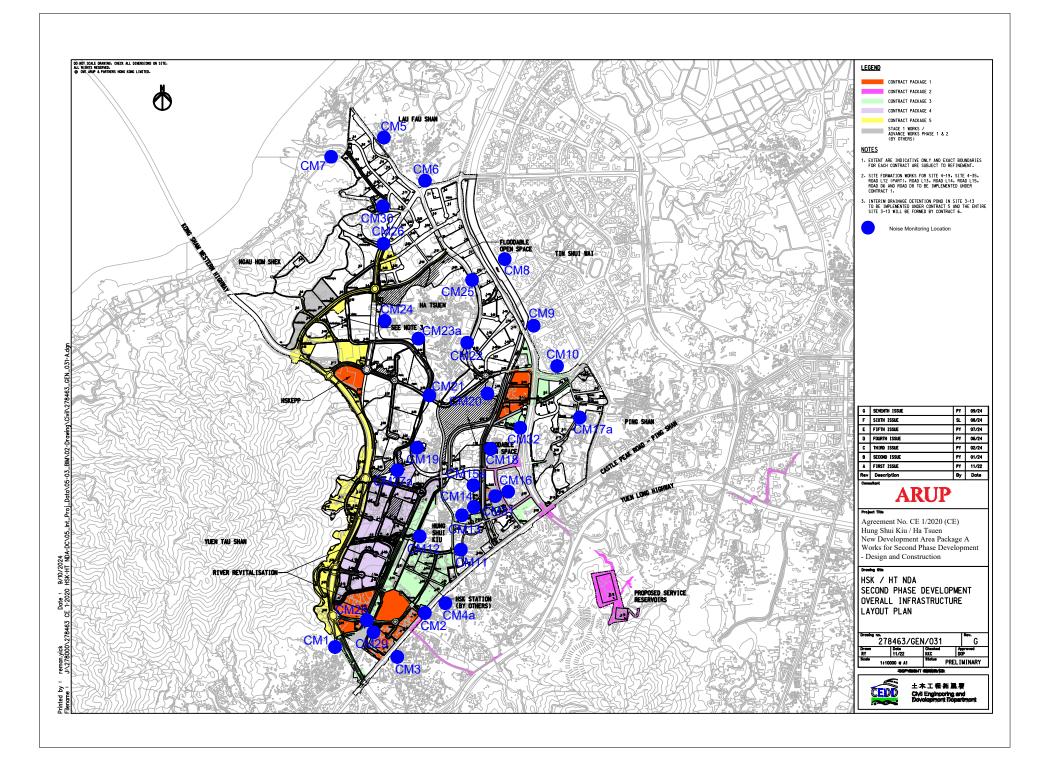


Figure 1.3 Annotated Site Drawing Presenting the Construction Activities Conducted at Contract 2 in the Reporting Period


Figure 1.4 Annotated Site Drawing Presenting the Construction Activities Conducted at Contract 3 in the Reporting Period

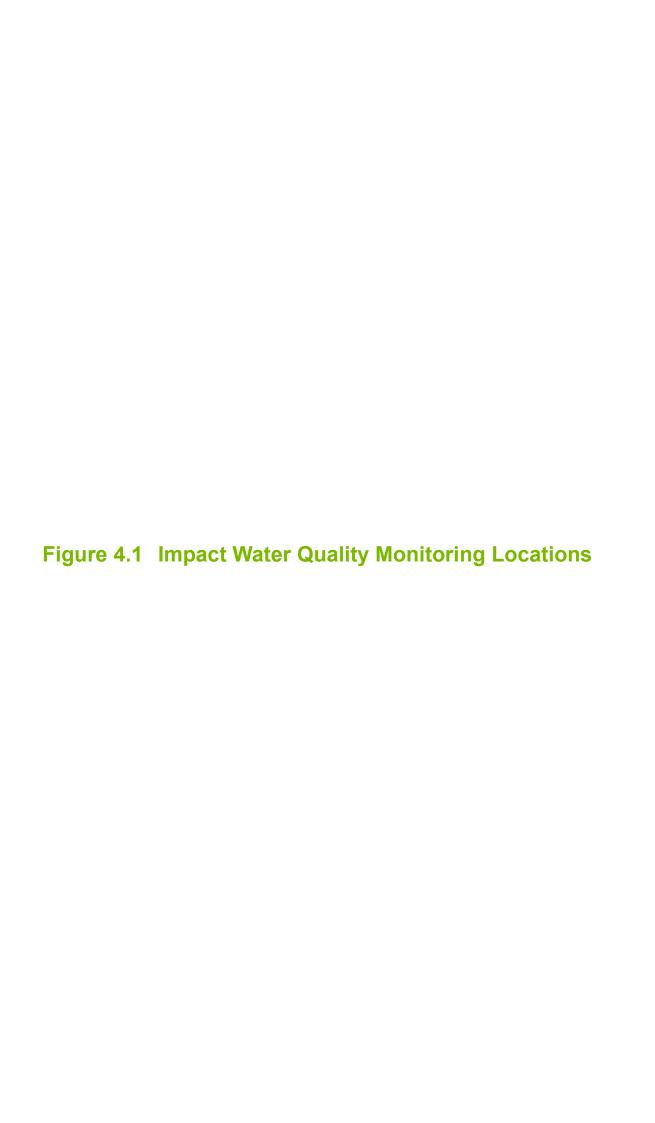


Figure 3.1	Impact Noise Monit	oring Locations

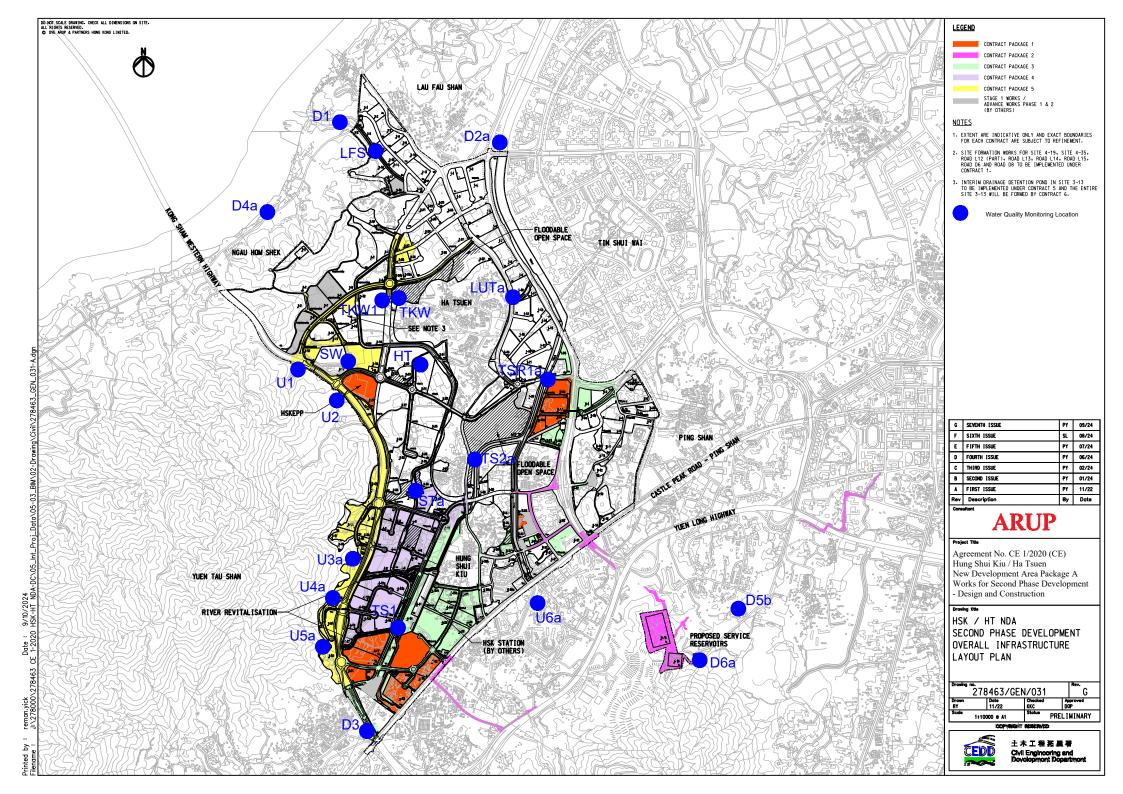
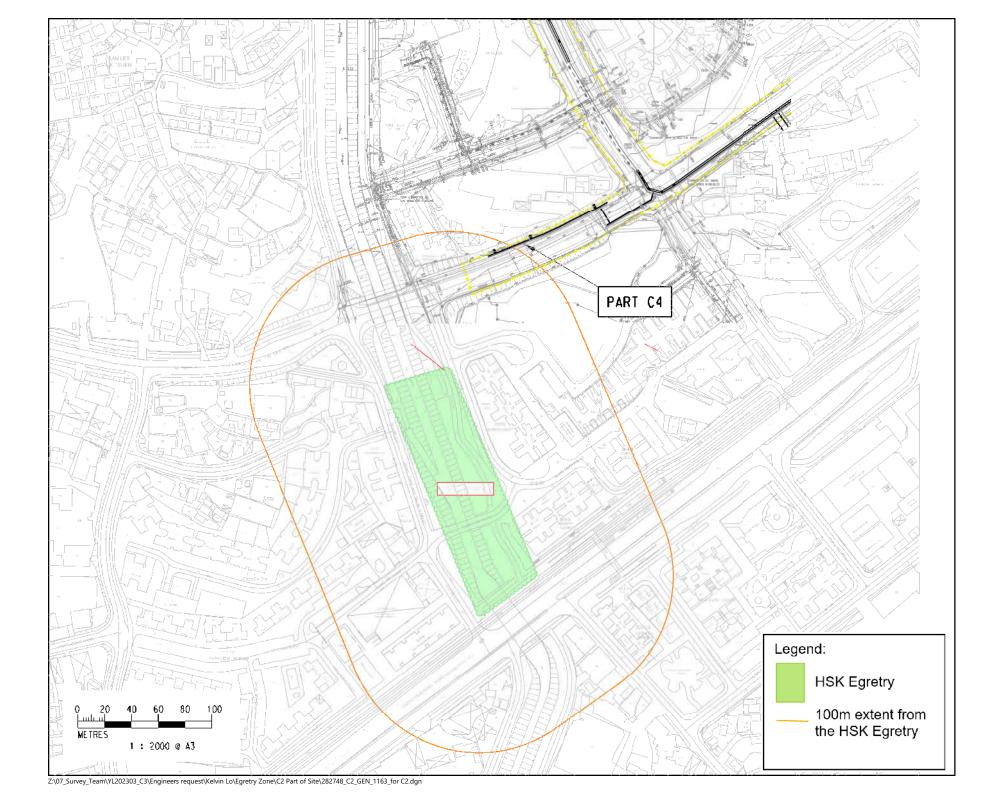
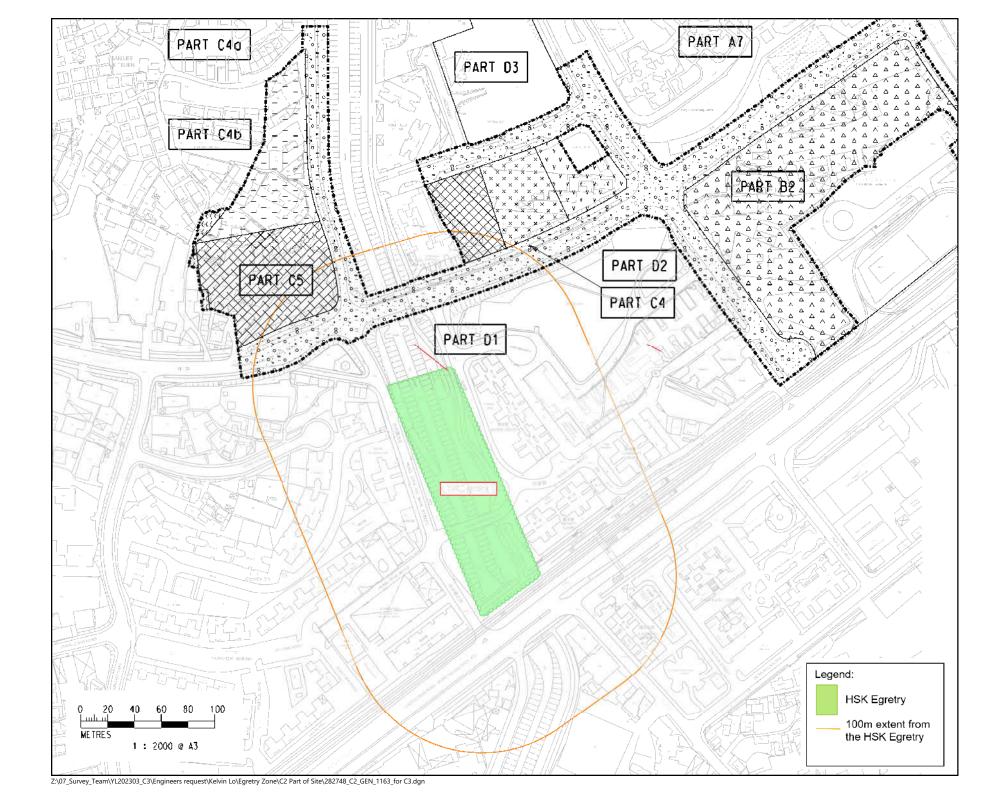




Figure 6.1 HSK Egretry and the 100m extent from the HSK **Egretry associated with the footprint of Contract 2**

Appendix 1.1	Construction Progr	ramme	

Contract No. YL/2023/01 Hung Shui Kiu / Ha Tsuen New Development Area Second Phase Development -Contract 1 - Site Formation and Engineering Infrastructure Works

Construction works programme

Items	Construction Activities	2025														
items	Construction Activities	Aug		Sep			Oct				Nov					
1	Caring Visit															
2	Tree Survey															
3	Site Appraisal															
	UU Detection			<u> </u>	<u> </u>	! :	<u> </u>	<u> </u>	:			-	:	:		-
5	GI works						:	:								
6	Watermain Laying Works															
	Realign of Bar Fencing															
	Excavation Works at Part T															
	Tree Felling Works												:			
- 40	Construction of Pole Mount															
	Transformer															
11	Demolition Works					:	!						!			
12	FS Tank Room Construction		-													
	CLC Sewerage Connection Works at Kiu															
13	Cheong Road															

Contract No.: YL/2023/02

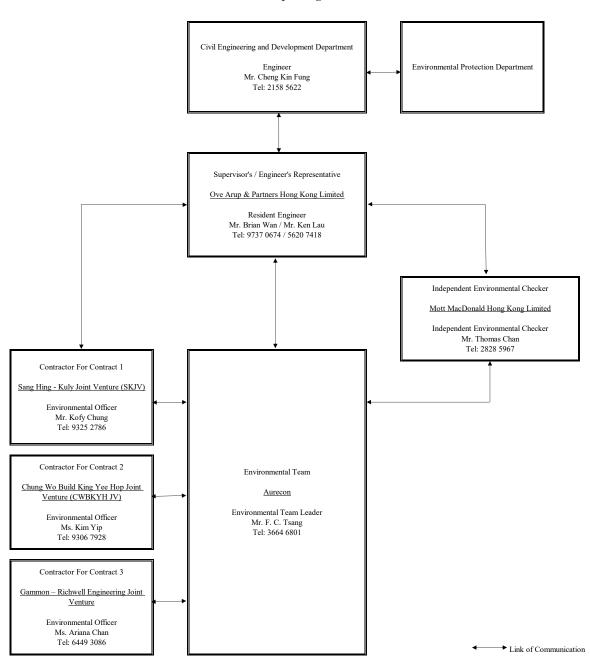
Project: Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development -

Contract 2 - Fresh Water Service Reservoir and Associated Mainlaying Works

Construction works programme

	Comptunation Activities	2025										
	Construction Activities	August	September	October	November							
1	Tree Felling											
2	Ground Investigation											
3	General Temporary Slope Works											
4	Piezometer / Standpipe Installation											
5	Preparation of TTA for pipe laying											
6	Pipe laying											

CONTRACT NO. YL/2023/03 HUNG SHUI KIU/HA TSUEN NEW DEVELOPMENT AREA SECOND PHASE DEVELOPMENT – CONTRACT 3 – SITE FORMATION AND ENGINEERING INFRASTRUCTURE WORKS


Construction Works Programme (August-25 to November-25)

Activities						20	25				
Activities	August		9	Septembe	er		October	November		ır e	
Site Clearance											
Pai Lau Construction											
Ground Investigation						<u> </u>					
Construction of L10 Road											
Box Culvert excavation											
BOX Cuivert excavation											
Construction of Temporary Nullah											
Construction of Temporary Numan											
Danson orienting during a											
Remove existing drainage											
Underground Utilities laying works											

Appendix 1.2	Project Organization	on Chart

Project Organization Chart

Appendix 1.3 Implementation Status of Environmental Mitigation Measure

Environmental Mitigation Implementation Schedule (EMIS)

EM&A Ref	. Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
Air Quali	ty					
S4.10	Watering once per hour on active works areas, exposed areas and unpaved haul roads to reduce dust emission The active construction works area should be reduced to one-third of monthly average work of the respective Work Contract so as to alleviate adverse dust impact. When there are open excavation and spoil handling works, hoarding of 3m high should be provided along the construction site boundary adjacent to the non-construction areas such as residential, educational institutes or recreation area in use so as to minimize the dust impact. Dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to Air Sensitive Receivers (ASRs). Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading area of barging point, and use of water sprinklers at the loading	To minimize the dust impact	Contractor	Construction Phase	Air Pollution Control Ordinance (APCO) To control the dust impact to meet HKAQO and TM-EIAO criteria Air Pollution Control (Construction Dust) Ordinance (APCO) To control the dust impact to meet HKAQO and TM-EIAO criteria	N/A N/A Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	 area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. Provision of not less than 2.4m high hoarding from ground level along site boundary where adjoins a road, streets or other accessible to the public except for a site entrance or exit. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. Imposition of speed controls for vehicles on site haul roads. Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs. Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides. 					
Construc	tion Noise					
S5.13	Use of quiet plant which should be made reference to the Powered Mechanical Equipment (PME) listed in the Technical Memorandum or the Quality Powered Mechanical Equipment (QPME) / other commonly used PME listed in Environmental Protection Department (EPD) web pages as far as possible which includes the Sound Power Level (SWLs) for specific quiet PME.	Reduce the noise levels of plant items	Contractor	or Construction Phase	EIAO-TM	Implemented
S5.13	Install movable noise barrier and enclosures. The movable noise barrier can provide 5 dB(A) noise reduction for mobile plant and 10 dB(A) noise reduction for static plant. The barrier material shall have a surface mass of not less than 14 kg/m2. The enclosures can provide 15 dB(A) noise reduction.	Screen the noisy plant items to be used at all construction sites				N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
S5.13	Proper workfront management and proper grouping of PME during construction activities operated at the critical work areas.	Reduce the construction noise impact				N/A
S5.13	Maintain the recommended minimum separation between the schools and the critical works areas during examination periods.					N/A
S5.13	 Good Site Management Practices only well-maintained plant should be operated on-site, and plant should be serviced regularly during the construction programme; machines and plant (such as trucks and cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works mobile plant should be sited as far away from NSRs as possible and practicable; and material stockpiles, site offices and other structures should be effectively utilized, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise				Implemented
S5.13	Liaison with the school representative(s) to obtain the examination schedule so as to avoid noisy construction activities during school examination period.					Implemented
S5.13	Set up a liaison group among CEDD, relevant government departments, contractors of the Works contracts, etc. during construction phase of the Project to ensure proper implementation of mitigation measures.					N/A
Water Qua	ality					

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
S6.11	Surface run-off from construction sites should be discharged into stormwater drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels/earth bunds/sandbag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels should be provided on site boundaries where necessary to intercept stormwater run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	To minimise impact from construction site run-off	Contractor	Construction Phase	Water Pollution Control Ordinance (WPCO), Technical Memorandum on EIA Ordinance (EIAO-TM), ProPECC PN 1/94, Technical	Implemented
S6.11	Silt removal facilities, channels and manholes should be maintained, and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains.				Memorandum on Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland	Implemented
S6.11	Construction works should be programmed to minimise soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces should be covered e.g. by tarpaulin, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided (e.g., along the crest / edge of excavation) to prevent stormwater run-off from washing across exposed soil surfaces. Arrangements should always be in place in such a way that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm.				and Coastal Waters (TM- DSS)	Implemented
S6.11	Earthworks final surfaces should be well compacted, and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.					N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
S6.11	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into stormwater drains via silt removal facilities.					Implemented
S6.11	Open stockpiles of construction materials (e.g., aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms.					Implemented
\$6.11	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent stormwater run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.					Implemented
S6.11	Good site practices should be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis.					Implemented
S6.11	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as practicable be recirculated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into stormwater drains via silt removal facilities.	To minimise impact from boring and drilling water				Implemented
S6.11	All vehicles and plants should be cleaned before they leave a construction site to minimise the deposition of earth, mud, debris on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into stormwater drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	To minimise impact from wheel washing water				Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
S6.11	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralised to within the pH range of 6 to 10 before discharging into foul sewers.	To minimise impact from acidic wastewater				N/A
S6.11	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the run-off and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS.	To minimise impact from effluent discharges				Implemented
S6.11	Beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO licence. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO licence.	To minimise impact from effluent discharges				Implemented
S6.11	To minimise the potential water quality impacts from the construction works located near any inland watercourses, the practices outlined in ETWB TC (Works) No. 5/2005 "Protection of natural streams/rivers from adverse impacts arising from construction works" should be adopted where applicable: Impermeable sheet piles and cofferdams should be used as required to divert water flow from the construction works area so that all the construction works would be undertaken within a dry zone and physically separated from the watercourses.	To minimise impact from construction works near watercourses			• WPCO, EIAO- TM, ETWB TC9Works) No. 5/2005	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	 The proposed works should preferably be carried out within the dry season where the flow in the stormwater culvert/water channel/stream is low. The use of less or smaller construction plants may be specified in works areas close to the inland water bodies. Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any watercourses during carrying out of the construction works. Stockpiling of construction materials and dusty materials should be covered and located away from any watercourses. Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers. Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the watercourses, where practicable. Mitigation measures to control site run-off from entering the nearby water environment should be implemented to minimise water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the run-off. Construction effluent, site run-off and sewage should be properly collected and/or treated. Any temporary works site inside the stormwater watercourses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the stormwater quality. Proper shoring may need to be erected in order to prevent soil/mud from slipping into the inland water 					
	bodies.					

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
S6.11	The key water quality measure for protection of the revitalised drainage channel water is to avoid polluted site run-off from reaching the revitalised drainage channel water. Relevant mitigation measures should follow the practices outlined in ETWB TC (Works) No. 5/2005 "Protection of natural streams / rivers from adverse impacts arising from construction works" as listed below: Impermeable sheet piles and cofferdams should be used as required to divert water flow from the construction works area so that all the construction works would be undertaken within a dry zone and physically separated from the revitalised drainage channel water. The proposed works should preferably be carried out within the dry season where the flow in the revitalised drainage channel is low. The use of less or smaller construction plants may be specified in works areas close to the revitalised drainage channel. Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from the revitalised drainage channel during carrying out of the construction works. Stockpiling of construction materials and dusty materials should be covered and located away from the revitalised drainage channel water. Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby revitalised drainage channel. Construction activities, which generate large amount of wastewater, should be carried out a distance away from the revitalised drainage channel, where practicable. Mitigation measures to control site run-off from entering the nearby revitalised drainage channel should be implemented to minimise water quality impacts. Surface channels should be provided along the edge of the	To minimise impact from revitalisation and greening of Drainage Channel Banks				Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	revitalised drainage channel within the work sites to intercept the run-off. Construction effluent, site run-off and sewage should be properly collected and/or treated. Any temporary works site inside the revitalised drainage channel should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the revitalised drainage channel water. Proper shoring may need to be erected in order to prevent soil / mud from slipping into the revitalised drainage channel.					
S6.11	The construction method and sequence of the proposed construction in watercourses / concrete flood storage pond for works sites of DP12 should be carefully designed so that all the construction works including any excavation and pilling operations would be undertaken within a dry zone and physically separated from the watercourses downstream.	To minimise impact from construction in watercourses / concrete flood storage pond			WPCO, EIAO-TM	N/A
S6.11	Impermeable sheet pile walls or cofferdam walls or steel casing should be installed to fully enclose the construction works area (including all the excavation and piling works) in the watercourse / pond prior to the commencement of any works in watercourse / pond. Dewatering of the construction works area or diversion of water flow should be undertaken before the construction works to avoid water flow in the construction works area. Silt removal facilities should be used to clarify the effluent generated from the dewatering operation before discharging back to the watercourse / drainage system.	To minimise impact from construction in watercourses / concrete flood storage pond			WPCO, EIAO-TM, TM-DSS	N/A
S6.11	Any construction works including excavation and pilling activities should be undertaken in a dry zone surrounded by the impermeable sheet pile walls or cofferdam walls or steel casing. Silt curtains should also be deployed around the construction works area inside the watercourse, where practicable, as a second layer of protection to further minimise sediment and contaminant release. All wastewater generated from the pilling activities should be regarded as	To minimise impact from construction in watercourses / concrete flood storage pond			WPCO, EIAO-TM	N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	part of the construction site effluent, which should be properly collected and treated as appropriate to meet the standards stipulated in the TM-DSS before disposal. It is recommended that the construction works in watercourses / pond should be undertaken in dry seasons, where practicable, when the water flow is low.					
S6.11	Construction works for removal and diversion of watercourses should be undertaken within a dry zone. Where necessary, cofferdams or similar impermeable sheet pile walls should be used to isolate the works areas from the neighbouring waters.	To minimise impact from removal and diversion of watercourse			WPCO, EIAO-TM	N/A
S6.11	Construction works at watercourse should be undertaken only after flow diversion or dewatering operation is fully completed to avoid water flow in the works area. Dewatering of watercourse should be performed by diverting the water flow to new or temporary drainage. Where necessary, cofferdams or similar impermeable sheet pile walls should be used to isolate the works areas from neighbouring waters. The permanent or temporary drainage for carrying the diverted flow from existing watercourse to be removed should be constructed and completed before dewatering of that existing watercourse. Construction of all the proposed permanent and temporary drainage should be undertaken in a dry zone prior to receiving any water flow.				WPCO, EIAO-TM, TM-DSS	N/A
S6.11	The Contractor should provide a dry zone for all the construction works to be undertaken in watercourses and stormwater drainage following the tentative works sequence as described above or using other approved methods as appropriate to suit the works condition. The flow diversion works should be conducted in dry season, where possible, when the flow in the watercourse is low. The wastewater and ingress water from the site should be properly treated to comply with the WPCO and the TM-DSS before discharge.				WPCO, EIAO-TM, TM-DSS	N/A
S6.11	The site practices outlined in the ProPECC PN 1/94 "Construction Site Drainage" and ETWB TC (Works) No. 5/2005 "Protection of natural streams/rivers from adverse impacts arising from construction works" should be adopted				WPCO, EIAO-TM, ProPECC PN 1/94,	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	for the proposed demolition or diversion of watercourses where applicable.				ETWB TC (Works) No. 5/2005	
S6.11	Construction works at the existing ponds / wet areas should be conducted only after dewatering of these ponds / wet areas is fully completed. The drained water generated from the dewatering of these ponds / wet areas to be removed should be temporarily stored in appropriate storage tanks or containers for reuse on-site as far as possible. Any surplus drained water should be tankered away for proper disposal at STW in a controlled manner.	To minimise impact from removal of ponds / wet areas			WPCO, EIAO-TM	N/A
S6.11	It is recommended to drain only one pond at a time to minimise the potential water quality impact. Dewatering works at ponds / wet areas should be conducted within dry season to minimise the quantity of drained water. No direct discharge of drained water to the stormwater drainage system or marine water should be allowed.					N/A
S6.11	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation, should be observed and complied with for control of chemical wastes.	To minimise impact from accidental spillage			WPCO, Waste Disposal Ordinance (WDO), Waste Disposal (Chemical Waste) (General) Regulation, EIAO-	Implemented
S6.11	Any service workshop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.				WPCO, WDO, Waste Disposal (Chemical Waste) (General) Regulation, EIAO- TM	N/A
S6.11	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal					Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.					
S6.11	No discharge of sewage to the stormwater system and marine water will be allowed. Adequate and sufficient portable chemical toilets should be provided in the works areas to handle sewage from construction workforce. A licensed waste collector should be employed to clean and maintain the chemical toilets on a regular basis.	To minimise impact from workforce sewage effluent			WPCO, EIAO-TM, TM-DSS	Implemented
S6.11	Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the surrounding environment. Regular environmental audit of the construction site should be conducted to provide an effective control of any malpractices and achieve continual improvement of environmental performance on site.				WPCO, EIAO-TM	Implemented
S6.11	Any excavated contaminated material and exposed contaminated surface should be properly housed and covered to avoid generation of contaminated run-off. Open stockpiling of contaminated materials should not be allowed. Any contaminated run-off or wastewater generated from the land decontamination processes should be properly collected and diverted to wastewater treatment facilities (WTF). The WTF shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as total petroleum hydrocarbon) to an undetectable range. All treated effluent from the wastewater treatment system shall meet the requirements as stated in	To minimise impact from contaminated site run-off and wastewater from land decontamination			WPCO, EIAO-TM, TM-DSS	N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	TM-DSS and should be either discharged into the foul sewers or tankered away for proper disposal.					
S6.11	No direct discharge of groundwater from contaminated areas should be adopted. Prior to any excavation works within the potentially contaminated areas, the baseline groundwater quality in these areas should be reviewed based on the past relevant site investigation data and any additional groundwater quality measurements to be performed with reference to Guidance Note for Contaminated Land Assessment and Remediation and the review results should be submitted to EPD for examination. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, this contaminated groundwater should be either properly treated or properly recharged into the ground in compliance with the requirements of the TM-DSS. If wastewater treatment is to be deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as total petroleum hydrocarbon) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in the TM-DSS and should be either discharged into the foul sewers or tankered away for proper disposal.	To minimise impact from groundwater from contaminated areas			WPCO, TM-DSS, Guidance Note for Contaminated Land Assessment and Remediation	N/A
S6.11	If deployment of wastewater treatment is not feasible for handling the contaminated groundwater, groundwater recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in section 2.3 of the TM-DSS. The baseline groundwater quality should be determined prior to the selection of the recharge wells and submit a working plan to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of	To minimise impact from groundwater from contaminated areas			WPCO, EIAO-TM, TM-DSS	N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	ambient groundwater at the recharge well. Groundwater monitoring wells should be installed near the recharge points to monitor the effectiveness of the recharge wells and to ensure that no likelihood of increase of groundwater level and transfer of pollutants beyond the site boundary. Prior to recharge, free products should be removed as necessary by installing the petrol interceptor. The Contractor should apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.					
S6.11	 The following measures should be implemented by the Contractors to minimise the chance of emergency construction site discharge (due to failure of treatment facilities such as sand traps, silt traps, sedimentation basins, oil interceptors etc.): Provide spare or standby treatment facilities of suitable capacities for emergency replacement in case damage or defect or malfunctioning of the duty treatment facilities is observed. Conduct daily integrity checking of the construction site drainage and treatment facilities to inspect malfunctions, in particular before, during and after a storm event. Carry out regular maintenance or desilting works to maintain effectiveness of the construction site drainage and treatment facilities in particular before, during and after a storm event. 	To minimise impact from construction site discharges			WPCO, EIAO-TM, TM-DSS	Implemented
S6.11	An Emergency Response Plan (ERP) should be developed to minimise the potential impact from construction site discharges under failure of treatment facilities during emergency situations or inclement weather. The ERP should give the emergency contacts to mobilise retention facilities and stakeholders to be notified as well as the details of the proposed construction site drainage system and the design and operation of duty and standby treatment facilities. The ERP should also provide the procedures and guidelines for routine integrity checking and maintenance of the drainage	To minimise impact from construction site discharges				Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	system and treatment facilities as well as the emergency response and rectification procedures to restore normal operation of the treatment facilities in case of treatment failure during emergency situation or inclement weather. The Best Management Practices (BMPs) in controlling water pollution arising from the construction activities and an event and action plan with action and limit levels for water quality monitoring should be included in the ERP. The ERP should be submitted to the EPD for approval before commencement of the construction works.					
S6.11	Construction of the Project would involve diversion of the existing twin 800 mm diameter rising mains along Tin Ying Road. New sewerage facilities for receiving the diverted sewage flow from the existing rising mains should be constructed prior to the commencement of any demolition and construction works at the existing rising mains. All sewage flow running in the existing rising mains along Tin Ying Road should be diverted to the new sewerage system prior to any demolition and construction works at the existing rising mains. No discharge of sewage flow to the environment should be allowed during the sewerage diversion works.	To minimise impact from sewerage diversion works			WPCO, EIAO-TM	N/A
S6.11	All excavated materials generated from removal and diversion of watercourses, removal and construction works in ponds and wet areas as well as the proposed bridge pier construction works in watercourses should be collected and handled in compliance with the Waste Disposal Ordinance. Excavated sediment, if any, generated from the excavation activities in watercourses, ponds and wet areas should be tested and classified in accordance with the ETWB TCW No. 34/2002 for determining the disposal arrangement for the sediment. No direct disposal of the construction wastes or excavated materials into the stormwater drainage system and marine water should be allowed.	To manage the disposal of sediment			Waste Disposal Ordinance, ETWB TCW No. 34/2002	N/A
Waste Ma	nagement					

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
S8.2	 Good Site Practice The following good site practices are recommended during the construction phase: Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, Training of site personnel in proper waste management and chemical handling procedures. Provision of sufficient waste disposal points and regular collection of waste. Appropriate measures to minimize windblown litter and dust during handing, transportation and disposal of waste; and Preparation of a WMP in accordance with the ETWB TCW No. 19/2005 Environmental Management on Construction Sites and submitted it to the Engineer for approval. 	Minimise waste generation during construction	Contractor	Construction Phase	Waste Disposal Ordinance, Public Cleansing and Prevention of Nuisances Regulation (Cap. 132BK)	Implemented
\$8.2	 Waste Reduction Measures Waste reduction is best achieved by proper planning and design at the planning and design phases, as well as by ensuring the implementation of good site practices. The following recommendations are proposed to achieve waste reduction: Segregation and storage of different types of waste in different containers or skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. Adopt proper storage and site practices to minimize the potential for damage to, and contamination of, construction materials; Plan the delivery and stock of construction materials carefully to minimise the amount of waste generated; Sort out demolition debris and excavated materials from demolition works to recover reusable / recyclable portions (i.e. soil, rock, broken concrete, etc.); Maximize the use of reusable steel formwork to reduce the amount of C&D materials; 				Waste Disposal Ordinance	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	 Minimize over ordering concrete, mortars and cement grout by doing careful check before ordering; and Adopt pre-cast construction method instead of cast-in-situ method for construction of concrete structures as far as possible. 					
\$8.2	Storage of Waste Storage of materials on site may induce adverse environmental impacts if not properly managed. The following recommendations should be implemented to minimise the impacts: • Waste, such as soil, should be handled and stored well to ensure secure containment, thus minimising the potential of pollution; • Maintain and clean storage areas routinely; • Stockpiling area should be provided with covers and water spraying system to prevent materials from being wind-blown or washed away; and • Different locations should be designated to stockpile each material to enhance reuse.	Minimise waste impacts during storage of waste			Waste Disposal Ordinance	Implemented
\$8.2	Collection and Transportation of Waste Waste hauler with appropriate permits should be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets. The following recommendation should be implemented to minimise the impacts: Remove waste in timely manner; Employ the trucks with cover or enclosed containers for waste transportation; Obtain relevant waste disposal permits from the appropriate authorities; and Dispose of waste at licensed waste disposal facilities.	Minimise waste impacts during collection and transportation of waste			Waste Disposal Ordinance	Implemented
\$8.2	Construction and Demolition (C&D) Materials Wherever practicable, C&D materials should be segregated from other waste to avoid contamination and ensure acceptability at the public filling areas or reclamation sites. The following mitigation measures should be implemented in handling the C&D materials:	Minimise waste impacts from C&D materials			Waste Disposal Ordinance, Land (Miscellaneous Provisions) Ordinance, Waste Disposal (Charges	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	 Adopt "selective demolition" technique to demolish the existing structure and facilities with a view to recovering broken concrete effectively for recycling purpose, where possible; Maintain the stockpile areas and reuse excavated fill material for backfilling; Carry out on-site sorting to recover the inert C&D materials and reusable and recyclable materials prior to disposal off-site; Make provisions in the contract documents to allow and promote the use of recycled aggregates where appropriate; and Implement a trip-ticket system for each works contract in accordance with DEVB TC(W) No. 6/2010 Trip-ticket System for Disposal of Construction and Demolition Material to ensure that the disposal of C&D materials are properly documented and verified. The Contractor should be responsible for devising a system to work for on-site sorting of C&D materials. It is recommended that the system should include the identification of the source of generation, estimated quantity of waste generated, arrangement for on-site sorting and/or collection, designated stockpiling areas, frequency of collection by recycling contractors and frequency of removal off-site. 	Control the			for Disposal of Construction Waste) Regulation (Cap. 354N)	NIA
\$8.2	Asbestos Containing Materials Due to the potential large amount of asbestos containing materials during the site clearance stage, asbestos investigation is required. However, as asbestos investigation will involve a large number of buildings and most premises will involve private access, which cannot be obtained at this stage, it is considered that an asbestos specialist shall be employed by the responsible parties during the construction stage to investigate this issue. Sufficient and reasonable lead time shall be allowed for preparation, vetting and implementation of Asbestos Investigation Report and Asbestos Abatement Plan in	asbestos containing materials and ensure proper storage, handling and disposal			Code of Practice on Handling, Transportation and Disposal of Asbestos Waste ProPECC PN 2/97 Handling of Asbestos Containing Materials in Buildings	N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	 accordance with Air Pollution Control Ordinance before commencement of any demolition or site clearance work. Some key precautionary measures related to the handling and disposal of asbestos are listed as following: Adoption of protection, such as full containment, mini containment, or segregation of work area; Provision of decontamination facilities for cleaning of workings, equipment and bagged waste before leaving the work area; Adoption of engineering control techniques to prevent fibre release from work area, such as use of negative pressure equipment with high efficiency particulate air (HEPA) filters to control air flow between the work area and the outside environment; Wetting of asbestos containing materials before and during disturbance, minimising the breakage and dropping of asbestos containing materials, and packing of debris and waste immediately after it is produced; Cleaning of work area by wet wiping and vacuuming with HEPA-filtered vacuum cleaner; Coating on any surfaces previously in contact with or contained by asbestos with a sealant; Proper bagging, safe storage and disposal of asbestos and asbestos-contaminated waste; Pre-treatment of all effluent from the work area before discharged; and Air monitoring strategy to check the leakage and clearance of the work area during and after the asbestos work. 					
S8.2	Chemical Waste For those processes which generated chemical waste, it may be possible to find alternatives to eliminate the use of chemicals, to reduce the generation quantities or to select a chemical type of less impact on environment, health and safety as far as possible. If chemical waste is produced at the construction site, the Contractor will be required to register with the EPD as a	Control the chemical waste and ensure proper storage, handling and disposal.			Waste Disposal (Chemical Waste) General) Regulation, Code of Practice on the Packaging, Labelling and	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	chemical waste producer. Chemical waste should be stored in appropriate containers and collected by a licensed chemical waste contractor. Chemical waste (e.g. spent lubricant oil) should be recycled at an appropriate facility as far as possible, while chemical waste that cannot be recycled should be disposed of at either the CWTC, or another licensed facility.				Storage of Chemical Waste	
\$8.2	General Refuse General refuse should be stored in enclosed bins separately from construction and chemical waste. Recycling bins should also be placed to encourage recycling. Preferably enclosed and covered areas should be provided for general refuse collection and routine cleaning for these areas should also be implemented to keep areas clean. A reputable waste collector should be employed to remove general refuse on a daily basis. It is expected that such arrangements would minimise potential environmental impacts.	Minimise production of general refuse and avoid odour, pest and litter impacts			Waste Disposal Ordinance	Implemented
	Excavated Sediment Since the amount of excavated sediment generated from the inland water removal / diversion works is expected to be small, all excavated sediment will be treated and reused onsite as backfilling materials for the Project. This approach avoids the need for off-site disposal that may result in impacts on the marine environment. In addition, all construction works near the watercourses should be undertaken within a dry zone and during dry season to avoid adverse impacts to the environment. The excavated sediment, if stockpiled on site, should be stored in enclosed containers and transported to the on-site treatment facilities as soon as practicable to minimise any potential odour impacts.	Proper handling of excavated sediment			Waste Disposal Ordinance	N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status			
	Contaminated Soil It is considered unlikely that contaminated land issues, if any subject to site investigation, would be a concern during either the construction or the operational of the proposed development as remediation on contaminated area would be carried out prior to construction. However, as a precaution, it is recommended that standard good site practices should be implemented during the construction phase to minimise any potential exposure to contaminated soils or groundwater.	Proper handling of contaminated soil			Practice Guide for Investigation and Remediation of Contaminated Land	N/A			
Land Con	Land Contamination								
-	Identified Potentially Contaminated Sites Prior to development of these sites, the Project Proponent should appoint a consultant to re-appraise these sites to update the corresponding findings and sampling and testing requirements presented in the Contamination Assessment Plan (CAP). Supplementary CAP(s), incorporating the findings of the site re-appraisal and the updated sampling and testing strategy, should be prepared and submitted to EPD for approval prior to conducting any site investigation (SI) works. SI works should then be carried out according to the supplementary CAP(s). Contamination Assessment Report (CAR(s)) and, if contaminated soil and/or groundwater identified, Remediation Action Plan (RAP(s)) should be prepared and submitted to EPD for approval.	Identify the presence, nature and extent of contamination and formulate the necessary remedial actions	CEDD/ Detailed Design Consultant / Contractor	After the land is resumed and handed over to the Project Proponent and prior to commencement of any remediation / construction works.	EIAO-TM, Guidance Manual for Use of Risk- Based Remediation Goals (RBRGs) for Contaminated Land Management, Guidance Notes for Contaminated Land Assessment and Remediation; and Practice Guide for Investigation of	Implemented			
-	Remaining Non-Contaminated Sites After the sites are handed over to the Project Proponent for development, the Project Proponent should appoint a consultant to revisit these sites to assess the latest land uses and site conditions. If any of these sites are found to have potential land contamination issues, the Project Proponents				Contaminated Land	Implemented			

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	appointed consultant should prepare and submit supplementary CAP(s) to EPD for approval prior to conducting any SI works. SI works should then be carried out according to the supplementary CAP(s). CAR(s) and, if contaminated soil and/or groundwater identified, RAP(s) should be prepared					
-	and submitted to EPD for approval Any contaminated soil and groundwater should be treated according to EPD's approved RAP(s) and RR(s) should be submitted to EPD for agreement after completion of the remediation works.	Remediate any contaminated soil and groundwater and demonstrate that the remediation works are adequate and is carried out in accordance with EPD's approved RAP(s).	Contractor	After the land is resumed and handed over to the PP and prior to commencement of any construction works.		N/A
Ecology						
S10.2.4	Scheduling the site formation and construction works at Sites 3-32, 3-33, 3-37, 3-39 and 3-40 outside the breeding season of ardeids	Minimise disturbance impacts to breeding ardeids in San Sang San Tsuen egretry	CEDD / Contractor	Construction phase	TM-EIAO	N/A
S10.2.5	Provision of screening (e.g., hoarding) at adjacent habitats within CA at northwest of San Sang San Tsuen.	Disturbance impacts (e.g. noise/vibration, visual) to adjacent habitats within the CA				N/A
S10.2.6	Hoarding around "Green Belt" zoning to mitigate construction disturbance impacts to the Crested Serpent Eagle habitat.	Minimise construction disturbance impacts to the Crested Serpent Eagle habitat				N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
\$10.2.7	Carefully design the construction methods and sequence of the proposed pier in the watercourses so that all piling and excavation works would be done within dry zone and physically separated from the watercourse downstream	Minimise potential water quality impacts to the habitats of the main channel and waterbird species				N/A
S10.2.8	An ecologist with relevant experience should be consulted before the clearance of any bat roost.	Ensure no bat roost would be damaged due to the proposed development				Implemented
\$10.2.10	Provision of hoarding for proper delineation of works boundary.	Minimise construction disturbance impacts to existing mitigation ponds				N/A
S10.2.11	General dust and noise control measures.	Mitigate disturbance impacts to the surrounding habitats and associated wildlife				Implemented
S10.2.12	Night-time lighting control.	Minimise glare disturbance to wildlife				N/A
S10.2.13 - S10.2.15	Good site practices during the construction phase to avoid any pollution entering any nearby watercourses.	Minimise water quality impacts to nearby water bodies				Implemented
Fisheries	<u>I</u>	<u> </u>		l		

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
S.13.4.8	Follow the mitigation measures proposed in the water quality assessment for construction and operational phase.	To protect fisheries resources from potential indirect impacts arising from deterioration of water quality	Contractor	Construction phase	EIA, contractual requirements	Implemented
Landscap	e and Visual					
CM1	Minimised construction area and contractor's temporary works areas The construction area and contractor's temporary works areas should be minimised. General Good Practice Measures - For areas unavoidably disturbed by the Project on a short-term basis e.g., works areas, the general principle to try and restore these to their former state to suit future land use, should be adhered to	Minimise impacts on adjacent landscape	Government/ Developer/ Detailed Design Consultant/ Contractor	Prior to construction, construction stages. This should be implemented as soon as the areas become available, to achieve early establishment	-	Implemented
CM2	Stripping and storing of topsoil Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where practical. The Contract Specification shall include storage and reuse of topsoil as appropriate. On potentially contaminated sites (as per Section 8) where investigation results indicate soil contamination is present, the use of contaminated soils for planting is to be avoided where appropriate.	Minimise the loss of existing topsoil and reduce the need to provide imported material		Detailed design, construction stages	-	N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
СМЗ	Protection of existing trees Tree Protection & Preservation – Exiting trees to be retained within the Project site should be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in Contractor's works areas. A detailed tree survey will be carried out for the Tree Removal Application (TRA) process which will be carried out at the later detailed design stage of the Project. The detailed tree survey will propose which trees should be retained, transplanted or felled and will include details of tree protection measures for those trees to be retained.	Protect and Preserve Trees			ETWB Technical Circular Works (TCW) No. 29/2004 and 3/2006	Implemented
CM4	Transplantation of existing trees where practical Trees unavoidably affected by the Project works should be transplanted where practical. Trees should be transplanted straight to their final receptor site and not held in a temporary nursery as far as possible. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, where applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the Project programme. A detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBTC 2/2004 and 3/2006 and final locations of transplanted trees should be agreed prior to commencement of the work. For trees associated with highways e.g. roadside planting along highways, that are unavoidably affected and should be transplanted, HyD HQ/GN/13 'Interim Guidelines for Tree Transplanting Works under Highways Department's Vegetation Maintenance Ambit' should be referred to.	Transplant Trees where suitable for transplantation		Prior to Construction, Construction Phase & Maintenance in Operation Phase	ETWB TCW 3/2006 and 2/2004 HyD HQ/GN/13 Interim Guidelines for Tree Transplanting Works under Highways Department's Vegetation Maintenance Ambit	Implemented
CM5	Control of night-time lighting Control of night-time lighting and glare by hooding all lights.	Minimise impact of night-time lighting and glare	Government/ Developer/ Contractor	Construction stage	-	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	Construction day and night-time lighting should be controlled to minimise glare impact to adjacent VSRs during the construction phase.					
CM6	Construction of decorative hoarding around construction works Erection of decorative mesh screens or construction hoardings around works areas in visually unobtrusive colours screen hoarding shall be erected along areas of the construction works site boundary where the works site borders publicly accessible routes and/or is close to visually sensitive receivers (VSRs). It is proposed that the screening be compatible with the surrounding environment and where possible, non-reflective, recessive colours be used.	To screen undesirable views of the works site.	Contractor	Construction stage	-	Implemented
CM7	Reduction of construction period to practical minimum Reduction of construction period to practical minimum	Minimise length of exposure to construction works	Government/ Developer/ Detailed Design	Construction stage	-	Implemented
CM8	Prevention of run-off Limitation of / Ensuring no run-off into surrounding landscape and prohibit run-off from entering adjacent water bodies and waterways.	Minimise / limit impacts on surrounding landscape and adjacent water sea areas	Consultant/ Contractor	Construction stage	Guidelines for this include ETWB Technical Circular (Works) No. 5/2005 Protection of natural streams/rivers from adverse impacts arising from construction works; Building Department (BD) Practice Note for Authorized Persons and Registered Structural Engineers 295: Protection of natural	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
					streams/rivers from adverse impacts arising from construction works	
CM9	Phasing of construction stage Phasing of the construction stage to reduce visual impacts.	Minimise visual impacts during the construction phase		Construction stage	-	Implemented
CM10	Advance screen planting Advance screen planting of fast-growing tree and shrub species to noise barriers and hoardings. Trees shall be capable of reaching a height >10m within 10 years.	Minimise length of exposure without long term mitigation measures		Detailed design, construction stages	ETWB TCW 3/2006 and 2/2004	N/A
CM11	Minimise disturbance footprints To minimise landscape and visual impacts, the footprint and elevation of such elements should be optimised to reduce topographical/ landform changes, as well as reduce land take and interference with natural terrain. Where there is a need to significantly cut into the existing landform, retaining walls should be considered as well as cut slopes, to minimise landform changes and land resumption, while also considering visual amenity. Earthworks and engineered slopes should be designed to be a visually interesting landform, compatible with the surrounding landscape and to mimic the natural contouring and terrain e.g. introduction and continuation of natural features such as spurs and ridges where appropriate, to support assimilation with the hillside setting.	Reduce topographical changes and minimize land resumption		Detailed design, construction stages	GEO Publication No. 1/2011, Technical Guidelines on Landscape Treatment on Slopes	N/A
CM12	Protection of existing water courses For all the natural rivers and streams inside the development area, consideration of protection measures should be made to minimise any impacts from the construction works. Avoid affecting Watercourses – In the detailed design, consideration should be made of watercourses, to minimise any impacts e.g. at new bridge crossings, viaducts, road alignment etc. Guidelines stated should be followed.	Avoid direct impacts to watercourses	Detailed Design Consultant/ Contractor	Detailed design, construction stages	Guidelines for this include ETWB Technical Circular (Works) No. 5/2005 Protection of natural streams/rivers from adverse	Implemented

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	Bridges and box culverts should also be used to minimise the necessity of watercourse modification and protect the watercourses where necessary.				impacts arising from construction works; Building Department (BD) Practice Note for Authorized Persons and Registered Structural Engineers 295: Protection of natural streams/rivers from adverse impacts arising from construction works	
CM13	Hydroseeding on modified slopes Hydroseeding of modified slopes should be done as soon as grading works are completed to prevent erosion and subsequent loss of landscape resources and character. Woodland tree seedlings and/ or shrubs should be planted where slope gradient and site conditions allow. In addition, landscape planting should be provided for the retaining structures associated with modified slopes where conditions allow. All slope landscaping works should comply with GEO Publication No. 1/2011-Technical Guidelines on Landscape Treatment for Slopes.	To prevent erosion and subsequent loss of landscape resources and character. To ensure manmade slopes are as visually amenable as possible.	Government/ Developer/ Detailed Design Consultant/ Contractor	Prior to Construction, Construction Phase & Maintenance in Operation Phase	GEO publication (1999) – Use of Vegetation as Surface Protection on Slope; GEO Publication No. 1/2011- Technical Guidelines on Landscape Treatment for Slopes	N/A
CM14	Integrate Open Space Network with existing nullah conditions For watercourses affected during construction, measures should be sought to minimise the impact with respect to the existing nullah conditions, existing shrubs and trees along the banks.	Minimise / limit impacts on surrounding landscape and			ETWB TCW No. 5/2005 – Protection of natural streams/rivers	N/A

EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
	Where natural streams are unavoidably affected along some of their length, they can be diverted to avoid the proposed new developments and retain the integrity of the whole stream. Detailed design of any stream diversion should follow the Guidelines in ETWB Technical Circular (Works) No. 5/2005 (Protection of natural streams/rivers from adverse impacts arising from construction works) and appropriate construction methods should be used.	adjacent water sea areas			from adverse impacts arising from construction works; DSD Practice Note No.1/2005, Guidelines on Environmental Considerations for River Channel Design	
Cultural F	Heritage Impact					
S13.1.1	The archaeological impact arising from the construction works should be assessed when the detailed design of the works is available. Preservation in situ is the top priority to safeguard the archaeological remains in the impacted area by amending the layout plans of the construction works. However, if the works cannot avoid disturbance to the archaeological deposit, depending on degree of direct impact, the following mitigation measures should be considered, such as archaeological surveys, archaeological watching brief, preservation by record and relocation of archaeological remains. The scope and programme of the archaeological fieldwork would be agreed with AMO.	Minimise impact to archaeology in SAIs	Contractor	Prior to construction phase commencement	Environmental Impact Assessment Ordinance EIAO (Cap.499) and Technical Memorandum (EIAO-TM) Guidance Note on Assessment of Impact on Sites of Culture Heritage in Environmental Impact Assessment Studies (GCH- EIA) Antiquities and Monuments Ordinance (A&MO) Hong Kong Planning Standards and	N/A

E	EM&A Ref.	Mitigation Measures	Objective of the recommended measure & main concerns to address	Implement Agent	Implementation Timing	Requirements and / or Standards to be Achieved	Implementation status
						Guidelines (HKPSG) Guidelines for Cultural Heritage Impact Assessment (GCHIA)	
	S13.1.2	Further archaeological survey is required to be conducted at APA 1 and APA 2 to ascertain the extent of any archaeological remains within the APAs if any construction works will be carried out. Based on the findings of the survey, mitigation measures could be proposed, such as preservation in situ, preservation by record, or relocation of archaeological remains, in prior agreement with the AMO. Direct impact arising from the proposed development within APA 3 should be avoided as far as possible.	Minimise impact to archaeology in APAs.			ÈIAO-TM GCH-EIA A&MO HKPSG GCHIA	N/A
	S13.1.5	Preservation by record (including cartographic and photographic record) prior to any construction works would be required for the directly impacted built heritage.	Minimise impact to built heritage			EIAO-TM GCH-EIA HKPSG GCHIA	N/A
	-	A Conservation Management Plan should be proposed to implement future maintenance and management of the cultural heritage.	Maximise the public education, heritage and cultural tourism related opportunities in this area as heritage attractions.	CEDD		EIAO-TM GCH-EIA A&MO HKPSG GCHIA	N/A

Appendix 1.4 Impact Monitoring Schedule of the Reporting Month

Service Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team (Version 2.0)											
C	Mon	T	August 2025	ть	lp:	le _{n4}					
Sun	Mon	Tue	Wed	Thur	Fri 1	<u>Sat</u> 2					
					Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5 and AM6 Impact Water Quality Monitoring at U2, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, D2a, D3, D5b and D6a	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14					
3	4	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U5a, T81, T82a, T8R1a, HT, LUTa, STA, D2a, D3, D5b and D6a (Cancelled due to unstable weather condition)	Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11, CM12, CM17a and CM19	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a		Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a					
10	11	12	Impact Air Quality Monitoring at AM7, AM8a,	14	15	Impact Noise Monitoring at CM1, CM2, CM3,					
	Impact Noise Monitoring at CM17a and CM19 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11 and CM12	AM10, AM11, AM12 and AM14 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a			CM4a, CM10, CM13, CM14, CM15a, CM16, CM18 and CM20 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a					
	Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11, CM12, CM17a and CM19 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14 Impact Noise Monitoring at CM1, CM2, CM3, CM4a, CM10, CM13, CM14, CM15a, CM16, CM18 and CM20	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	21	22 Egretry Monitoring	Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa STa, D2a, D3, D5b and D6a					
	25 Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14 Impact Noise Monitoring at CM1, CM2, CM3, CM4a, CM10, CM13, CM14, CM15a, CM16, CM18 and CM20 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	26	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	28	29 Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11, CM12, CM17a and CM19 Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14					
31											

- Remarks:

 1. The scholar large due to unforescen circumstances (e.g. advene weather, etc.).

 2. Impact air quality monitoring at AM22, AM24 and AM25a will be carried out when the planned sensitive receivers are commissioned.

 3. Impact noise monitoring at CM27a, CM28, CM28, CM29 and CM27a will be carried out when the planned sensitive receivers are commissioned.

 4. Impact noise monitoring at CM27a, CM28, CM29, CM31 and CM27a will be carried out when the planned sensitive receivers are commissioned.

 4. Impact noise requisity monitoring truly monitoring truly and truly in the carried out by the Environmental Team applicated monitoring and back included in Successful Planse Development Area Stage I Works, and the corresponding water quality monitoring data at these stations will be shared with this Project (i.e. Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development).

Contract		Water Quality Monitoring Station *																					
Contract	U1	U2	U3a	U4a	U5a	U6a	TS1	TS2a	TSR1a	STa	SW	HT	LUTa	D2a	LFS	D1	D3	TKW	TKW1	D4a	U7	D5a / D5b	D6a
Contract 1		✓			✓	✓	✓	✓	✓			✓	✓	✓			✓						
Contract 2						✓			✓					✓			✓					✓	✓
Contract 3			✓	✓	✓	✓	✓	✓	✓	✓				✓			✓						
Contract 4			✓	✓	✓		✓	✓	✓	✓				✓									
Contract 5	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓				
Contract 6	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓				
Contract 7		TO BE CONFIRMED																					

* Monitoring stations at which inland waters runs into the major water systems, including their tributaries, passing through the site boundary of works contract(s), potentially causing water quality impacts as a result of water bodies contamination, will be considered being the representative monitoring stations for the corresponding works contract(s) as the rationale for determination of contract involvement in terms of environmental monitoring.

Contract		Air Quality Monitoring Station *																				
Contract	AM1	AM2	AM3	AM4	AM5	AM6	AM7	AM8a	AM9	AM10	AM11	AM12	AM13	AM14	AM15	AM16	AM17	AM21	AM22	AM23	AM24	AM25a
Contract 1	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓		✓					✓		✓	✓
Contract 2	✓		✓	✓	✓	✓	✓				✓								✓			
Contract 3	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓				✓			✓			
Contract 4		✓	✓	✓	✓	✓													✓			
Contract 5		✓											✓	✓	✓		✓	✓	✓	✓	✓	✓
Contract 6					✓	✓	✓	✓	✓		✓	✓	✓	✓	✓		✓	✓		✓	✓	✓
Contract 7		TO BE CONFIRMED																				

* Monitoring stations that are specifically within the 500m buffer area projected from the site boundary of works contract(s) will be considered being the representative monitoring stations for the corresponding works contract(s) as the rationale for determination of contract involvement in terms of environmental monitoring.

Contract		Construction Noise Monitoring Station *																										
Contract	CM1	CM2	CM3	CM4a	CM9	CM10	CM11	CM12	CM13	CM14	CM15a	CM16	CM17a	CM18	CM19	CM20	CM21	CM22	CM23a	CM24	CM25	CM26	CM27a	CM28	CM29	CM30	CM31	CM32
Contract 1	✓	✓	✓	✓		✓			✓	✓	✓	✓		✓		✓								✓	✓		✓	✓
Contract 2		✓	✓	✓					✓	✓	✓	✓		✓											✓		✓	✓
Contract 3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓							✓	✓	✓		✓	✓
Contract 4								✓							✓								✓	✓				
Contract 5	✓																			✓	✓	✓	✓	✓	✓	✓		
Contract 6														✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			✓		✓
Contract 7								7 TO BE CONFIRMED																				

* Monitoring stations that are specifically within the 300m buffer area projected from the site boundary of works contract(s) will be considered being the representative monitoring stations for the corresponding works contract(s) as the rationale for determination of contract involvement in terms of environmental monitoring.

Appendix 2.1	Calibration Certificates of Impact Air Quality Monitoring Equipment

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Man Cheong Building	Site ID:	W-A6	Date:	17-Aug-2024
Serial No:	1050	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa)	755.4	Actual Temperature during	300.5
(mm Hg):	755.1	Calibration (T _a) (deg K):	300.5

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.06920
Serial No.:	3465	Intercept (b _c):	-0.02547
Calibration Due Date:	15-Jan-25	Corr. Coeff:	0.99999

Calibration Data

Plate or	ΔH ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	11.80	1.660	61.0	60.55
13	8.90	1.444	55.0	54.60
10	6.40	1.226	49.0	48.64
7	4.10	0.984	44.0	43.68
5	3.50	0.910	41.0	40.70

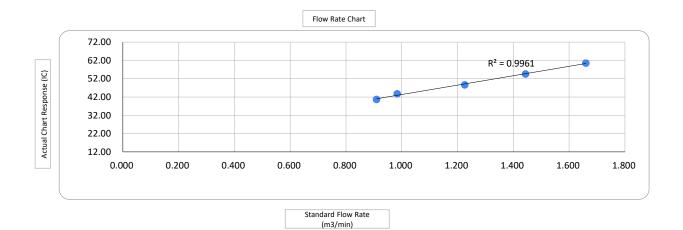
Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m= 25.6837	b= 17.6667	Corr. Coeff= 0.9981
------------	------------	---------------------

Calculations

 $Qa = 1/m_c*[Sqrt (\Delta H_2O*(P_a/P_{Std})*(T_{Std}/T_a))-b_c]$

 $IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))$


Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K

P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

Date: 17-Aug-2024

Checked by: Andy Li
Project Technician, Environmental

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Tung Chung East	Site ID:	DM-1b	Date:	15-Aug-2025
Serial No:	1086	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

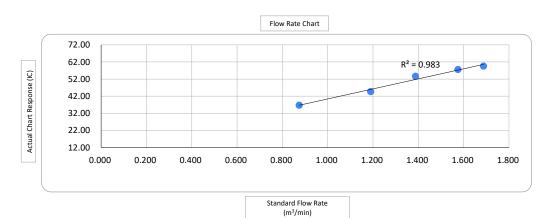
Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.08107
Serial No.:	3465	Intercept (b _c):	-0.04295
Calibration Due Date:	2-Dec-25	Corr. Coeff:	0.99999

Calibration Data

Plate or	ΔH₂O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
5	3.20	0.874	37.0	36.75
7	6.00	1.190	45.0	44.70
10	8.20	1.387	54.0	53.64
13	10.60	1.575	58.0	57.61
18	12.20	1.688	60.0	59.60

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)


m=	29.3501	b=	11.0483	Corr. Coeff=	0.9915

Calculations

 $\begin{aligned} &Qa = 1/m_c^* [Sqrt \ (\Delta H_2 O^* (P_a/P_{Std})^* (T_{Std}/T_a)) - \ b_c] \\ &IC = I^* (Sqrt \ (P_a/P_{Std})^* (T_{Std}/T_a)) \end{aligned}$

Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope b_c = calibrator intercept m = sampler slope b = sampler intercept T_{Std} = 298 deg K P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

J.

Checked by: Joe Ho
Lead Consultant, Environmental

Date: 15-Aug-2025

RECALIBRATION DUE DATE:

January 15, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 15, 2024

Rootsmeter S/N: 438320

Ta: 294 **Pa:** 755.9

°K

Operator: Jim Tisch

Calibration Model #: TE-5025A

Calibrator S/N: 3465

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4350	3.3	2.00
2	3	4	1	1.0180	6.4	4.00
3	5	6	1	0.9090	8.0	5.00
4	7	8	1	0.8670	8.9	5.50
5	9	10	1	0.7150	12.9	8.00

		Data Tabula	tion		2317
Vstd	Qstd	$\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0037	0.6995	1.4200	0.9956	0.6938	0.8820
0.9996	0.9819	2.0081	0.9915	0.9740	1.2473
0.9975	1.0973	2.2452	0.9894	1.0885	1.3945
0.9963	1.1491	2.3547	0.9882	1.1398	1.4626
0.9909	1.3859	2.8399	0.9829	1.3747	1.7639
	m=	2.06920		m=	1.29570
QSTD[b=	-0.02547	QA	b=	-0.01582
	r=	0.99999	~ .	r=	0.99999

	Calculation	s	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time	Qa= Va/ΔTime	
	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	r manometer reading (mm Hg)
	olute temperature (°K)
Pa: actual bard	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

RECALIBRATION **DUE DATE:**

December 2, 2025

ertificate d

Calibration Certification Information

Cal. Date: December 2, 2024 Rootsmeter S/N: 438320

Ta: 293

Pa: 757.4

°K

Operator: Jim Tisch Calibration Model #:

TE-5025A

Calibrator S/N: 3465

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4300	3.2	2.00
2	3	4	1	1.0190	6.4	4.00
3	5	6	1	0.9090	7.9	5.00
4	7	8	1	0.8680	8.8	5.50
5	9	10	1	0.7170	12.8	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0093	0.7058	1.4238	0.9958	0.6963	0.8796	
1.0051	0.9863	2.0136	0.9916	0.9731	1.2439	
1.0031	1.1035	2.2512	0.9896	1.0886	1.3907	
1.0018	1.1542	2.3611	0.9884	1.1387	1.4586	
0.9965	1.3898	2.8476	0.9831	1.3711	1.7592	
	m=	2.08107		m=	1.30313	
QSTD	b=	-0.04295	QA [b=	-0.02653	
•	r=	0.9999	-4.	r=	0.99999	

Calculations					
$ Vstd = \Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta) $ $ Va = \Delta Vol((Pa-\Delta P)/Pa) $					
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime		
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$		

	Standard Conditions				
Tstd:	298.15 °K				
Pstd:	760 mm Hg				
	Key				
ΔH: calibrato	r manometer reading (in H2O)			
	er manometer reading				
Ta: actual absolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)					
b: intercept					
m: slope					

RECALIBRATION

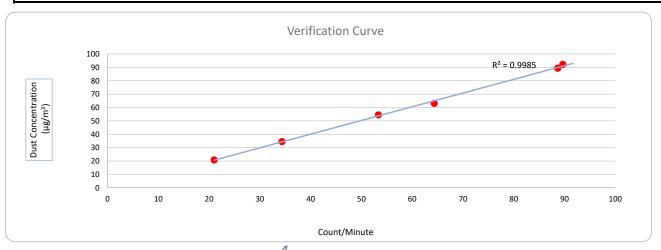
US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Information of Calibrated Equipement

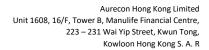
Verification Test Date:	17-Aug-24	to	18-Aug-24	Next Verification Test Date:	17-Aug-25
Unit-under-Test- Model No.:		Sibata LD-5R			
Unit-under-Test Serial No.:		467356			
Our Report Refrence No.:	R	PT-24-HVS-008	0		
Calibration Location:			Man Ched	ong Building	
_					=

Standard Equipment Information


Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1050	3465
Last Calibration Date:	17-Aug-24	15-Jan-24
Next Calibration Date:	30-Aug-24	15-Jan-25

Equipement Vertification Result

Verification		Duration			Results from Calibrated Equipement		Results from Standard Equipment
Test No.	Date	Start-time	End-time	Elapsed Time (in min)	Total Counts	Counts/ Minute x-axis	Dust Concentration (μg/m³) y-axis
1	17/08/2024	11832.91	11835.91	180.00	16140	90	92
2	17/08/2024	11835.91	11838.91	180.00	9600	53	54
3	17/08/2024	11838.91	11841.91	180.00	15960	89	89
4	18/07/2024	11841.94	11844.94	180.00	6180	34	34
5	18/07/2024	11844.94	11847.94	180.00	3780	21	21
6	18/07/2024	11847.94	11850.94	180.00	11580	64	63


Linear Regression of y on x

Operated By: Andy Li Date: 23-08-2024
Project Technician, Environmental

Checked By: Tandy Tse Date: 23-08-2024
Senior Consultant, Environmental

Certification of Calibration

Information of Unit-under-test (UUT)

Date of Calibration:	15-Aug-2025 and 21-Aug-2025	Next Calibration Date:	15-Oct-25
UUT Manufacturer:	Sibata	UUT Model No.:	LD-5R
UUT Serial No.:	467356	Report Reference No.:	RPT-25-HVS-0157
Calibration Location:	Tung Chung East	_	

Information of Reference Equipment

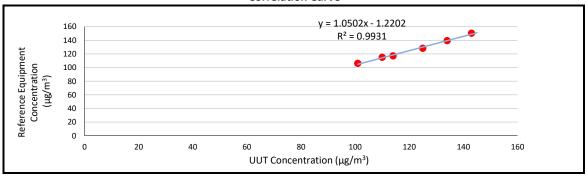
Reference Equipment Manufacturer:	Tisch Environmental	Tisch Environmental	П
Reference Equipment Model No.:	TE-5170X	TE-5025A	
Reference Equipment Serial No.:	1086	3465	
Last Calibration Date:	15-Aug-25	2-Dec-24	
Next Calibration Date:	15-Oct-25	2-Dec-25	

Calibration of 1-Hour TSP Result

	Results from UUT	Results from Standard Equipment
Calibration Point	Mass Concentration (μg/m³)	Reference Concentration (μg/m³)
	X-axis	Y-axis
1	101	106
2	125	128
3	114	117
4	143	150
5	134	139
6	110	115
Average	121	126

Linear Regression of Y on X

Slope, mv: 1.0502	Intercept: -1.2202	*Correlation Coefficient: 0.9965
Verification Test Result:	Strong Correlation, Results	s were accepted.


^{*} If the Correlation Coefficient < 0.90, check and recalibrate.

Environmental

Set Calibration Factor

Particulate Concentration by Reference Equipment (μg/m³):	126
Particulate Concentration by UUT (μg/m³):	121
Measuring Time, (min):	60
K Factor = High Volume Sampler / UUT, (μg/m³):	1.04

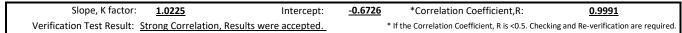
Correlation Curve

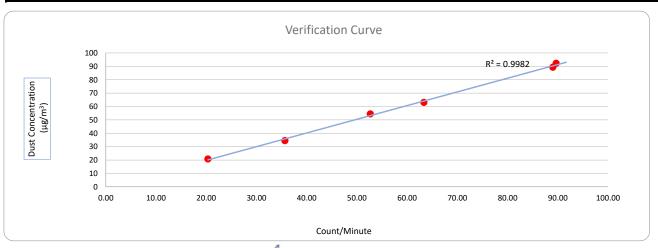
Operated By:
Andy Li
Project Technician,
Environmental
Signature:
Date:
28-08-2025

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Information of Calibrated Equipement

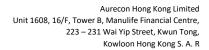
Verification Test Date:	17-Aug-24	to	18-Aug-24	Next Verification Test Date:	17-Aug-25
Unit-under-Test- Model No.:		Sibata LD-5R			
Unit-under-Test Serial No.:		467358			
Our Report Refrence No.:	R	PT-24-HVS-008	32		
Calibration Location:			Man Chec	ong Building	
Calibration Location: -			Man Chec	ong Building	-


Standard Equipment Information


Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1050	3465
Last Calibration Date:	17-Aug-24	15-Jan-24
Next Calibration Date:	30-Aug-24	15-Jan-25

Equipement Vertification Result

Verification	on		Duration		Results from Calibrated Equipement		Results from Standard Equipment
Test No.	Date	Start-time	End-time	Elapsed Time (in min)	Total Counts	Counts/ Minute x-axis	Dust Concentration (μg/m³) y-axis
1	17/08/2024	11832.91	11835.91	180.00	16140	89.67	92
2	17/08/2024	11835.91	11838.91	180.00	9480	52.67	54
3	17/08/2024	11838.91	11841.91	180.00	16020	89.00	89
4	18/07/2024	11841.94	11844.94	180.00	6420	35.67	34
5	18/07/2024	11844.94	11847.94	180.00	3660	20.33	21
6	18/07/2024	11847.94	11850.94	180.00	11400	63.33	63


Linear Regression of y on x

Operated By: Andy Li Date: 23-08-2024
Project Technician, Environmental

Checked By: Tandy Tse Date: 23-08-2024
Senior Consultant, Environmental

Certification of Calibration

Information of Unit-under-test (UUT)

Date of Calibration:	15-Aug-2025 and 21-Aug-2025	Next Calibration Date:	15-Oct-25
UUT Manufacturer:	Sibata	UUT Model No.:	LD-5R
UUT Serial No.:	467358	Report Reference No.:	RPT-25-HVS-0159
Calibration Location:	Tung Chung East		

Information of Reference Equipment

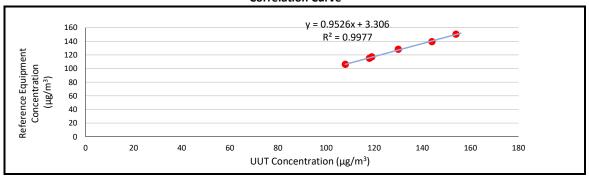
Reference Equipment Manufacturer:	Tisch Environmental	Tisch Environmental
Reference Equipment Model No.:	TE-5170X	TE-5025A
Reference Equipment Serial No.:	1086	3465
Last Calibration Date:	15-Aug-25	2-Dec-24
Next Calibration Date:	15-Oct-25	2-Dec-25

Calibration of 1-Hour TSP Result

	Results from UUT	Results from Standard Equipment
Calibration Point	Mass Concentration (μg/m³)	Reference Concentration (μg/m³)
	X-axis	Y-axis
1	108	106
2	130	128
3	119	117
4	154	150
5	144	139
6	118	115
Average	129	126

Linear Regression of Y on X

Slope, mv: 0.9526	Intercept: <u>3.3060</u>	*Correlation Coefficient: <u>0.9989</u>
Verification Test Resul	t: Strong Correlation, Result	s were accepted.


^{*} If the Correlation Coefficient < 0.90, check and recalibrate.

Environmental

Set Calibration Factor

Particulate Concentration by Reference Equipment (μg/m³):	126
Particulate Concentration by UUT (μg/m³):	129
Measuring Time, (min):	60
K Factor = High Volume Sampler / UUT, (μg/m³):	0.98

Correlation Curve

Operated By: Andy Li
Project Technician,
Environmental

Signature:

Date: 28-08-2025

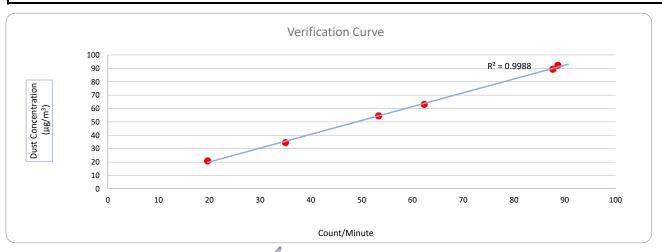
Checked By: Joe Ho _____ Signature: _____ Date: _____ 28-08-2025

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Information of Calibrated Equipement

Verification Test Date:	17-Aug-24	to	18-Aug-24	Next Verification Test Date:	17-Aug-25
Unit-under-Test- Model No.:		Sibata LD-5R			
Unit-under-Test Serial No.:		467359			
Our Report Refrence No.:	F	PT-24-HVS-008	3		
Calibration Location:			Man Che	ong Building	
-					-

Standard Equipment Information


Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1050	3465
Last Calibration Date:	17-Aug-24	15-Jan-24
Next Calibration Date:	30-Aug-24	15-Jan-25

Equipement Vertification Result

Verification		Duration		Results from Calibrated Equipement		Results from Standard Equipment	
Test No.	Date	Start-time	End-time	Elapsed Time (in min)	Total Counts	Counts/ Minute x-axis	Dust Concentration (μg/m³) y-axis
1	17/08/2024	11832.91	11835.91	180.00	15960	89	92
2	17/08/2024	11835.91	11838.91	180.00	9600	53	54
3	17/08/2024	11838.91	11841.91	180.00	15780	88	89
4	18/07/2024	11841.94	11844.94	180.00	6300	35	34
5	18/07/2024	11844.94	11847.94	180.00	3540	20	21
6	18/07/2024	11847.94	11850.94	180.00	11220	62	63


Linear Regression of y on x

Slope, K factor:	<u>1.0331</u>	Intercept:	-0.6022	*Correlation Coefficient,R:	<u>0.9994</u>
Verification Test Result: Str	ong Correlation, Resu	lts were accepted.	* 11	the Correlation Coefficient, R is <0.5. Checkir	ng and Re-verification are required.

Operated By: Andy Li Date: 23-08-2024
Project Technician, Environmental

Checked By: Tandy Tse Date: 23-08-2024
Senior Consultant, Environmental

Certification of Calibration

Information of Unit-under-test (UUT)

Date of Calibration:	15-Aug-2025 and 21-Aug-2025	Next Calibration Date:	15-Oct-25
UUT Manufacturer:	Sibata	UUT Model No.:	LD-5R
UUT Serial No.:	467359	Report Reference No.:	RPT-25-HVS-0160
Calibration Location:	Tung Chung East	_	

Information of Reference Equipment

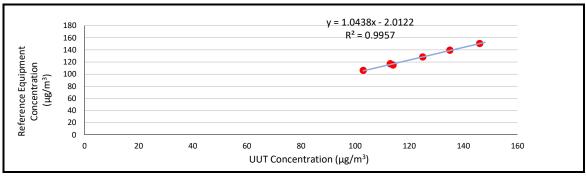
Reference Equipment Manufacturer:	Tisch Environmental	Tisch Environmental
Reference Equipment Model No.:	TE-5170X	TE-5025A
Reference Equipment Serial No.:	1086	3465
Last Calibration Date:	15-Aug-25	2-Dec-24
Next Calibration Date:	15-Oct-25	2-Dec-25

Calibration of 1-Hour TSP Result

	Results from UUT	Results from Standard Equipment
Calibration Point	Mass Concentration (μg/m³)	Reference Concentration (μg/m³)
	X-axis	Y-axis
1	103	106
2	125	128
3	113	117
4	146	150
5	135	139
6	114	115
Average	123	126

Linear Regression of Y on X

Slope, mv: 1.0438	Intercept: <u>-2.0122</u>	*Correlation Coefficient: <u>0.9978</u>
Verification Test Result:	Strong Correlation, Results	s were accepted.


^{*} If the Correlation Coefficient < 0.90, check and recalibrate.

Environmental

Set Calibration Factor

Particulate Concentration by Reference Equipment (μg/m³):	126
Particulate Concentration by UUT (μg/m³):	123
Measuring Time, (min):	60
K Factor = High Volume Sampler / UUT, $(\mu g/m^3)$:	1.03

Correlation Curve

Operated By: Andy Li
Project Technician,
Environmental

Signature:

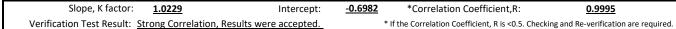
Date: 28-08-2025

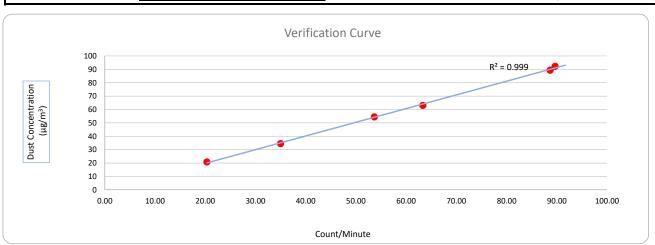
Checked By: Joe Ho _____ Signature: _____ Date: _____ 28-08-2025

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Information of Calibrated Equipement

Verification Test Date:	17-Aug-24	to	18-Aug-24	Next Verification Test Date:	17-Aug-25
Unit-under-Test- Model No.:		Sibata LD-5R			
Unit-under-Test Serial No.:		467360			
Our Report Refrence No.:	R	PT-24-HVS-0084	4		
Calibration Location:			Man Chec	ong Building	
_					=

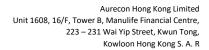

Standard Equipment Information


Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1050	3465
Last Calibration Date:	17-Aug-24	15-Jan-24
Next Calibration Date:	30-Aug-24	15-Jan-25

Equipement Vertification Result

Verification	Duration		Results from Calibrated Equipement		Results from Standard Equipment		
Test No.	Date	Start-time	End-time	Elapsed Time (in min)	Total Counts	Counts/ Minute x-axis	Dust Concentration (μg/m³) y-axis
1	17/08/2024	11832.91	11835.91	180.00	16140	89.67	92
2	17/08/2024	11835.91	11838.91	180.00	9660	53.67	54
3	17/08/2024	11838.91	11841.91	180.00	15960	88.67	89
4	18/07/2024	11841.94	11844.94	180.00	6300	35.00	34
5	18/07/2024	11844.94	11847.94	180.00	3660	20.33	21
6	18/07/2024	11847.94	11850.94	180.00	11400	63.33	63

Linear Regression of y on x



Operated By: Andy Li Date: 23-08-2024

Project Technician, Environmental

Checked By: Tandy Tse Date: 23-08-2024
Senior Consultant, Environmental

Certification of Calibration

Information of Unit-under-test (UUT)

Date of Calibration:	15-Aug-2025 and 21-Aug-2025	Next Calibration Date:	15-Oct-25
UUT Manufacturer:	Sibata	UUT Model No.:	LD-5R
UUT Serial No.:	467360	Report Reference No.:	RPT-25-HVS-0161
Calibration Location:	Tung Chung East		

Information of Reference Equipment

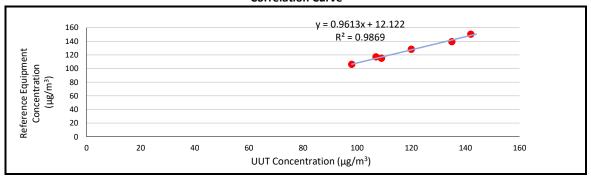
Reference Equipment Manufacturer:	Tisch Environmental	Tisch Environmental
Reference Equipment Model No.:	TE-5170X	TE-5025A
Reference Equipment Serial No.:	1086	3465
Last Calibration Date:	15-Aug-25	2-Dec-24
Next Calibration Date:	15-Oct-25	2-Dec-25

Calibration of 1-Hour TSP Result

	Results from UUT	Results from Standard Equipment
Calibration Point	Mass Concentration (μg/m³)	Reference Concentration (μg/m³)
	X-axis	Y-axis
1	98	106
2	120	128
3	107	117
4	142	150
5	135	139
6	109	115
Average	119	126

Linear Regression of Y on X

Slope, mv: 0.9613	Intercept: <u>12.1217</u>	*Correlation Coefficient: <u>0.9934</u>
Verification Test Resu	llt: Strong Correlation, Results	were accepted.

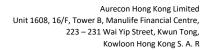

^{*} If the Correlation Coefficient < 0.90, check and recalibrate.

Environmental

Set Calibration Factor

Particulate Concentration by Reference Equipment (μg/m³):	126
Particulate Concentration by UUT (μg/m³):	119
Measuring Time, (min):	60
K Factor = High Volume Sampler / UUT, (μg/m³):	1.06

Correlation Curve



Operated By: Andy Li
Project Technician,
Environmental

Signature:

Date: 28-08-2025

Checked By: Joe Ho _____ Signature: _____ Date: _____ 28-08-2025

Certification of Calibration

Information of Unit-under-test (UUT)

Date of Calibration:	15-Aug-2025 and 21-Aug-2025	Next Calibration Date:	15-Oct-25
UUT Manufacturer:	Sibata	UUT Model No.:	LD-5R
UUT Serial No.:	882107	Report Reference No.:	RPT-25-HVS-0164
Calibration Location:	Tung Chung East	_	

Information of Reference Equipment

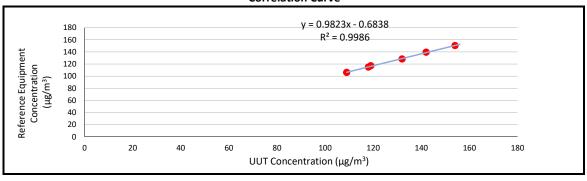
Reference Equipment Manufacturer:	Tisch Environmental	Tisch Environmental
Reference Equipment Model No.:	TE-5170X	TE-5025A
Reference Equipment Serial No.:	1086	3465
Last Calibration Date:	15-Aug-25	2-Dec-24
Next Calibration Date:	15-Oct-25	2-Dec-25

Calibration of 1-Hour TSP Result

	Results from UUT	Results from Standard Equipment
Calibration Point	Mass Concentration (μg/m³)	Reference Concentration (μg/m³)
	X-axis	Y-axis
1	109	106
2	132	128
3	119	117
4	154	150
5	142	139
6	118	115
Average	129	126

Linear Regression of Y on X

Ī	Slope, mv: <u>0.9823</u>	Intercept: <u>-0.6838</u>	*Correlation Coefficient: 0.9993
	Verification Test Result:	Strong Correlation, Results	s were accepted.


^{*} If the Correlation Coefficient < 0.90, check and recalibrate.

Environmental

Set Calibration Factor

Particulate Concentration by Reference Equipment (μg/m³):	126
Particulate Concentration by UUT (μg/m³):	129
Measuring Time, (min):	60
K Factor = High Volume Sampler / UUT, (μg/m³):	0.98

Correlation Curve

Operated By: Andy Li
Project Technician,
Environmental

Signature:

Date: 28-08-2025

Appendix 2.2	Impact Air Quality Monitoring Data

1111 6	56999)- 9199990 (A 1/	881817	206 1/	(F) / (F) 1. (F)	576 881 88 08 08 811	()	. // U// B/	OBS (2 // 1 / 12)

) 1	յ աշտապա). m Trafum (u 17, տայայ	(mud T(n	es ((mm)-m m		made desag, ())(d(m(desag) m
B 08	Weather		Sampling		Reading (1)	Reading (2)	Reading (3)	Average
		Time (1)	Time (2)	Time (3)	μg/m ³	μg/m ³	μg/m ³	μg/m³
01/08/2025	Sunny	9:30	10:30	11:30	51	46	37	45
06/08/2025	Cloudy	9:30	10:30	11:30	76	44	36	52
12/08/2025	Sunny	9:30	10:30	11:30	11	11	11	11
18/08/2025	Cloudy	10:00	11:00	12:00	15	4	5	8
23/08/2025	Sunny	9:15	10:15	11:15	10	9	9	9
29/08/2025	Sunny	9:45	10:45	11:45	8	7	3	6

	TSP-1hr	
Average	Max.	Min.
22	76	3

		Sampling	Sampling	Sampling	Reading	Reading	Reading	Average
2 O2	Weather	Time (1)	Time (2)	Time (3)	(1)	(2)	(3)	Average
		Tille (1)	Tillie (2)	IIIIle (3)	µg/m ³	µg/m ³	µg/m ³	μg/m ³
01/08/2025	Sunny	9:45	10:45	11:45	13	9	7	10
06/08/2025	Cloudy	9:45	10:45	11:45	9	6	8	8
12/08/2025	Sunny	9:10	10:10	11:10	17	10	11	13
18/08/2025	Cloudy	10:15	11:15	12:15	11	5	7	8
23/08/2025	Sunny	9:00	10:00	11:00	8	9	6	8
29/08/2025	Sunny	9:15	10:15	11:15	5	4	4	4

	TSP-1hr	
erage	Max.	Min.
8	17	4
	Max. 17	Min.

) 1)) 85(888)-812(880 () 1/, 88) 8) (804 1 (08/(88)-812(8) 8)(888 (88 08 0288)(,() ')(0(8 088)() ,

	B 08	Weather	Sampling	Sampling	Sampling	Reading (1)	Reading (2)	Reading (3)	Average
			Time (1)	Time (2)	Time (3)	µg/m ³	μg/m ³	μg/m ³	µg/m³
ı	01/08/2025	Sunny	10:00	11:00	12:00	12	7	7	9
Ī	06/08/2025	Cloudy	10:00	11:00	12:00	19	3	3	8
	12/08/2025	Sunny	9:50	10:50	11:50	12	10	11	11
	18/08/2025	Cloudy	10:51	11:51	12:51	7	7	7	7
	23/08/2025	Sunny	9:35	10:35	11:35	11	10	10	10
Ī	29/08/2025	Sunny	10:05	11:05	12:05	9	5	4	6

	TSP-1hr	
Average	Max.	Min.
9	19	3

) 1)) 65(20)-312(20) () 1/, 33) 3) (20) 1(06/((20)-312(2)) 8)(333(330) 0833((,() ·))(0(3(0833(() -

B 08	Weather			Sampling	Reading (1)	Reading (2)	Reading (3)	Average
		Time (1)	Time (2)	Time (3)	µg/m³	μg/m ³	μg/m ³	µg/m³
01/08/2025	Sunny	13:20	14:20	15:20	13	11	11	12
06/08/2025	Cloudy	13:05	14:05	15:05	21	16	15	17
12/08/2025	Sunny	13:30	14:30	15:30	9	10	8	9
18/08/2025	Cloudy	14:00	15:00	16:00	8	8	9	8
23/08/2025	Sunny	13:00	14:00	15:00	7	8	7	7
29/08/2025	Sunny	13:35	14:35	15:35	6	8	7	7

	TSP-1hr	
Average	Max.	Min.
10	21	6
10	21	6

) 1)) 85(888)-818(880 (() 1/, 88) 8) (804(1(08/(88)-8188) 2)(888(880 0888(,())) (0(8(0888())

		Sampling	Sampling	Sampling	Reading	Reading	Reading	Average
2 O2	Weather	Time (1)	Time (2)	Time (3)	(1)	(2)	(3)	Average
		Tillie (1)	Tille (2)	IIIIle (3)	µg/m ³	μg/m ³	μg/m ³	μg/m³
01/08/2025	Sunny	13:35	14:35	15:35	8	9	8	8
06/08/2025	Cloudy	13:25	14:25	15:25	13	13	10	12
12/08/2025	Sunny	14:00	15:00	16:00	5	4	4	4
18/08/2025	Cloudy	13:00	14:00	15:00	11	10	8	10
23/08/2025	Sunny	14:30	15:30	16:30	9	10	9	9
29/08/2025	Sunny	14:26	15:26	16:26	5	4	4	4

	TSP-1hr	
Average	Max.	Min.
8	13	4

) 1)) 65(836)-315(830 () 1/, 88) 8) (806(1 (66/(88)-815(8) 8)(886(806 688((,))) (0(8 (686())/

2 O2	Weather	Sampling			Reading (1)	Reading (2)	Reading (3)	Average
		Time (1)	Time (2)	Time (3)	μg/m³	μg/m³	μg/m³	µg/m³
01/08/2025	Sunny	13:00	14:00	15:00	9	7	6	7
06/08/2025	Cloudy	13:00	14:00	15:00	16	15	15	15
12/08/2025	Sunny	13:30	14:30	15:30	8	7	7	7
18/08/2025	Cloudy	14:10	15:10	16:10	9	9	8	9
23/08/2025	Sunny	14:15	15:15	16:15	9	8	9	9
29/08/2025	Sunny	14:55	15:55	16:55	7	6	6	6

	TSP-1hr	
Average	Max.	Min.
9	16	6

)1))	25(22(2)-212(220	(() 1/, 22) 2) (BOE(1(0	B/((22)-212(2) 2)(2 22(1) 6 650 BO 60 60	, () ·)(q (2(0個個(() 0	

	B 08	Weather				Reading (1)	Reading (2)	Reading (3)	Average
			Time (1)	Time (2)	Time (3)	μg/m³	μg/m³	μg/m³	μg/m³
ı	02/08/2025	Cloudy	13:00	14:00	15:00	56	53	54	54
ı	07/08/2025	Cloudy	12:25	13:25	14:25	23	19	13	18
ı	13/08/2025	Cloudy	13:00	14:00	15:00	11	10	8	10
ı	19/08/2025	Cloudy	13:00	14:00	15:00	43	28	24	32
ı	25/08/2025	Sunny	13:29	14:29	15:29	9	7	7	8
ı	30/08/2025	Sunny	13:20	14:20	15:20	8	5	3	5

	TSP-1hr	
Average	Max.	Min.
21	56	3

) 1)) 85(888)-818880 (() 1/,88) 8) (808(1 (08/(88)-8188) B)(888(8808 0888((,() ·)(0)(8 (0888(() 1

	2 02	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average
			Time (1)	Time (2)	Time (3)	μg/m³	μg/m³	μg/m³	μg/m³
	02/08/2025	Cloudy	12:50	13:50	14:50	56	53	64	58
	07/08/2025	Cloudy	13:30	14:30	15:30	35	16	15	22
	13/08/2025	Cloudy	13:30	14:30	15:30	8	7	7	7
	19/08/2025	Cloudy	13:45	14:45	15:45	33	31	26	30
Ī	25/08/2025	Sunny	13:10	14:10	15:10	1	1	3	2
Ī	30/08/2025	Sunny	13:00	14:00	15:00	4	3	3	3

	TSP-1hr	
Average	Max.	Min.
20	64	1

) 1)) 85(858)-815(880 (() 1/, 88) 8) (806(1(08/(88)-815(8) 8)(888(880 0888((,() ·)) (0(8(0888(() 8)

	2 02	Weather	Sampling Time (1)	Sampling Time (2)		Reading (1)	Reading (2)	Reading (3)	Average
			Time (1)	Time (2)	Time (3)	µg/m³	μg/m³	μg/m ³	µg/m³
ı	02/08/2025	Cloudy	13:30	14:30	15:30	36	24	20	27
ı	07/08/2025	Cloudy	13:00	14:00	15:00	23	19	16	19
ı	13/08/2025	Cloudy	13:30	14:30	15:30	18	14	11	14
ı	19/08/2025	Cloudy	13:35	14:35	15:35	21	19	20	20
ı	25/08/2025	Sunny	13:59	14:59	15:59	9	7	7	8
Γ	30/08/2025	Sunny	13:25	14:25	15:25	7	7	6	7

	TSP-1hr	
Average	Max.	Min.
16	36	6

) 1)) @5(@\$\$)-@1@\$@0 (() 1/, @\$) @) (@\$\$(1(\$\$)/(\$\$)-@1@\$) @)(@@\$(@\$\$\$(@\$\$\$ \$\$\$)@ \$\$\$\$(,())(\$\$(\$\$\$\$() @\$

ſ			Sampling	Sampling	Sampling	Reading	Reading	Reading	Average
П	2 O2	Weather	her Time (1)	Time (2)	Time (3)	(1)	(2)	(3)	7440450
			Title (1)	Tillie (2)	111110 (0)	µg/m ³	µg/m³	µg/m ³	μg/m³
Г	02/08/2025	Cloudy	9:20	10:20	11:20	33	26	20	26
Γ	07/08/2025	Cloudy	10:00	11:00	12:00	21	10	6	12
Γ	13/08/2025	Cloudy	9:15	10:15	11:15	16	17	11	15
Γ	19/08/2025	Cloudy	9:23	10:23	11:23	49	22	19	30
ſ	25/08/2025	Sunny	9:30	10:30	11:30	8	5	5	6
Γ	30/08/2025	Sunny	9:40	10:40	11:40	7	5	3	5

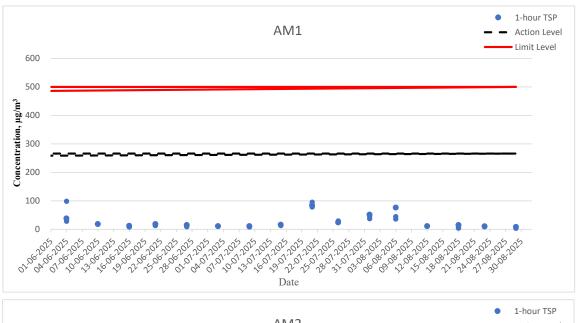
TSP-1hr							
Max.	Min.						
49	3						

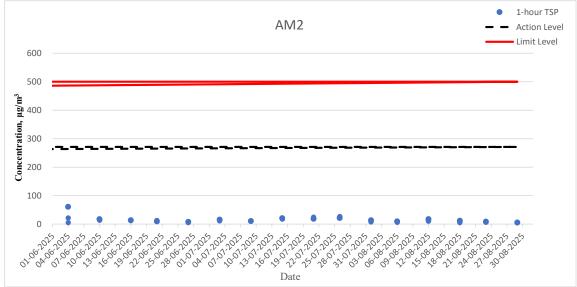
) 1)) 85(888)-818(880 (() 1/, 88) 8) (806(1 (08/(88)-818(8) 8)(888(80 (880 088)(,() ')(0(8 (088)() 88

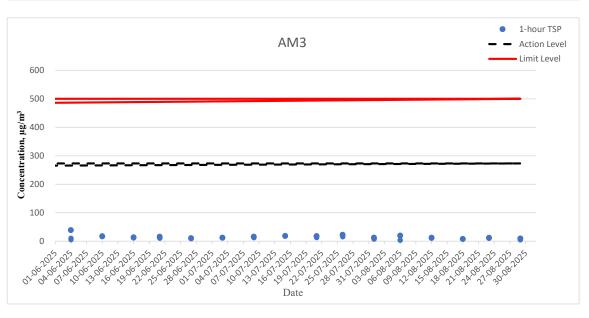
	2 O2	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading	Reading	Reading	Average
						(1)	(2)	(3)	Melage
						µg/m³	μg/m ³	μg/m ³	μg/m³
ſ	02/08/2025	Cloudy	9:30	10:30	11:30	26	27	22	25
ſ	07/08/2025	Cloudy	10:10	11:10	12:10	15	16	17	16
ſ	13/08/2025	Cloudy	9:25	10:25	11:25	10	15	11	12
ſ	19/08/2025	Cloudy	9:34	10:34	11:34	17	15	16	16
ſ	25/08/2025	Sunny	10:20	11:20	12:20	7	4	5	5
ſ	30/08/2025	Sunny	9:55	10:55	11:55	9	10	9	9

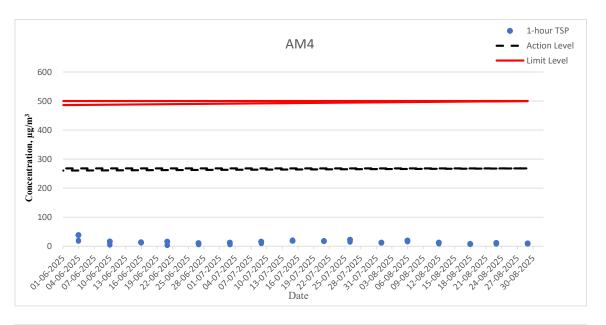
	TSP-1hr	
Average	Max.	Min.
14	27	4

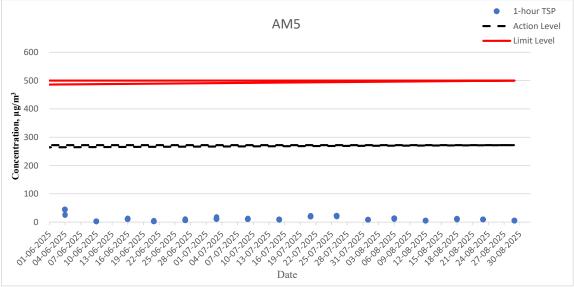
) 1)) @5(@\$\$)-@1@\$@0 (() 1/, @\$) @) (@\$\$(1(\$\$)/(\$\$)-@1@\$) @)(@\$\$\$(@\$\$\$ \$\$\$\$(,())(\$\$(\$ \$\$\$\$() &-

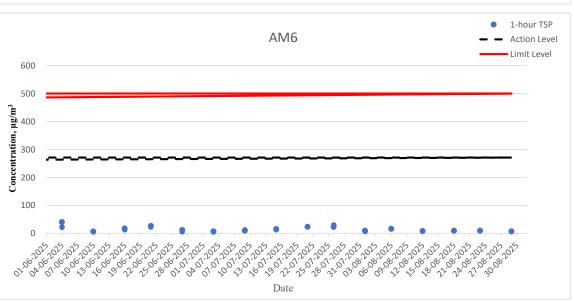

2 02	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average
					μg/m³	μg/m³	µg/m³	μg/m³
02/08/2025	Cloudy	9:55	10:55	11:55	35	20	16	24
07/08/2025	Cloudy	10:30	11:30	12:30	30	24	22	25
13/08/2025	Cloudy	9:45	10:45	11:45	14	13	12	13
19/08/2025	Cloudy	10:08	11:08	12:08	67	85	82	78
25/08/2025	Sunny	10:50	11:50	12:50	6	5	5	5
30/08/2025	Sunny	10:15	11:15	12:15	5	4	2	4

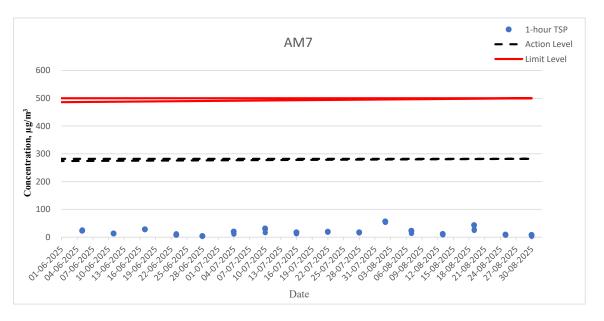

	TSP-1hr	
Average	Max.	Min.
25	85	2

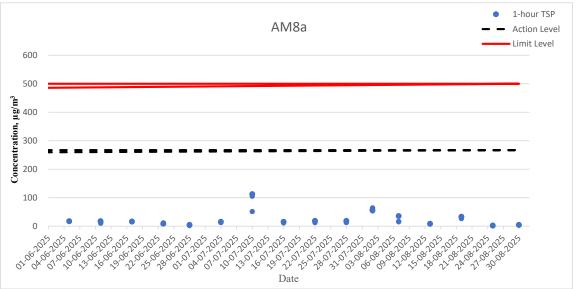

) 1)) 85(868)-818(880 () 1/,88) 8) (806(1 (08/(88)-818(8) 19) 8) (880 088((,()) (088(() 8/

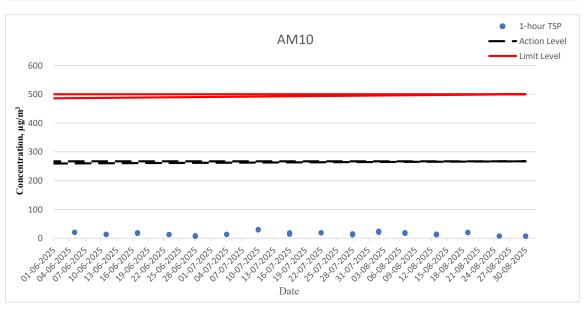

2 O2	Weather	Sampling			Reading (1)	Reading (2)	Reading (3)	Average
		Time (1)	Time (2)	Time (3)	μg/m³	µg/m³	μg/m³	μg/m³
06/08/2025	Cloudy	10:20	11:20	12:20	10	9	7	9
12/08/2025	Cloudy	10:30	11:30	12:30	6	5	2	4
18/08/2025	Cloudy	10:30	11:30	12:30	8	7	4	6
23/08/2025	Sunny	16:43	17:43	18:43	4	4	8	5
29/08/2025	Sunny	13:00	14:00	15:00	8	7	7	7

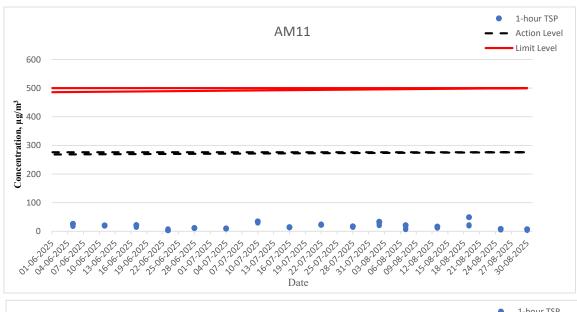

	TSP-1hr	
Average	Max.	Min.
6	10	2

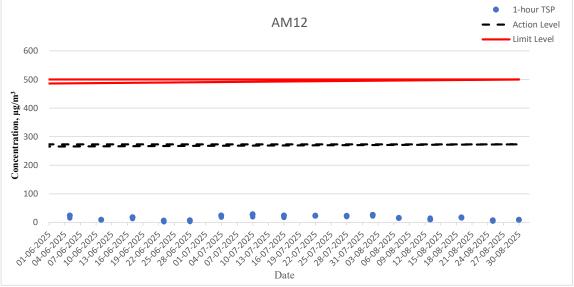


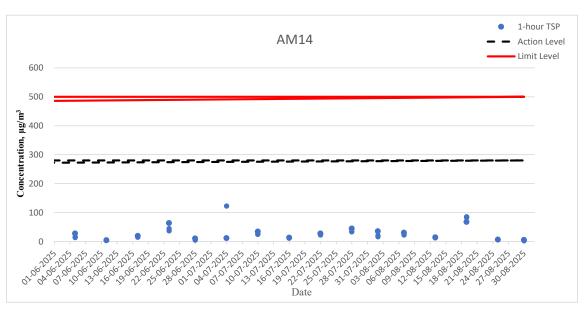


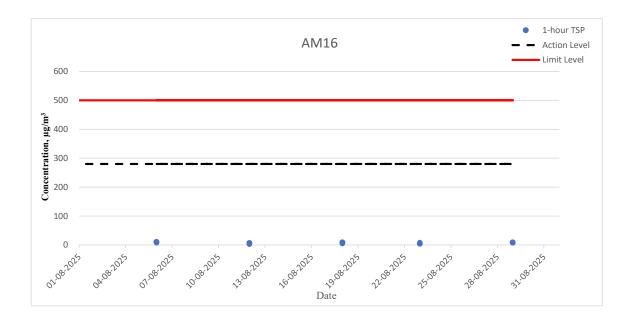


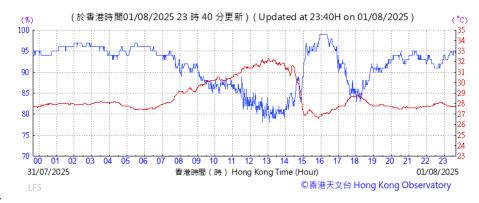


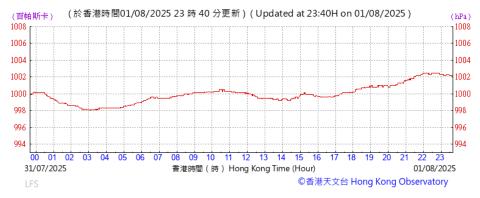












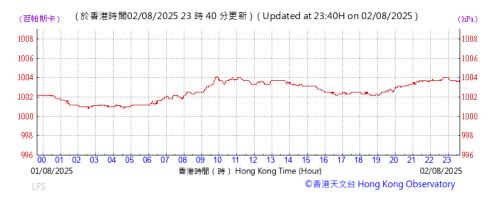
Appendix 2.3 Weather Information during the Reporting Period

Temperature/humidity:

Pressure:

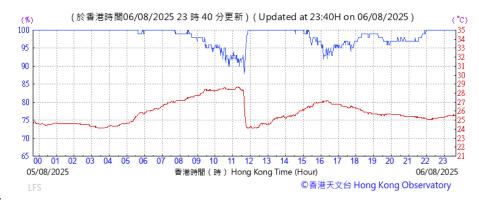


Wind Direction:

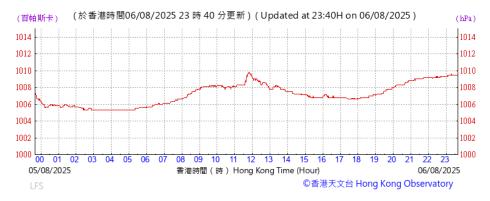


Temperature/humidity:

Pressure:

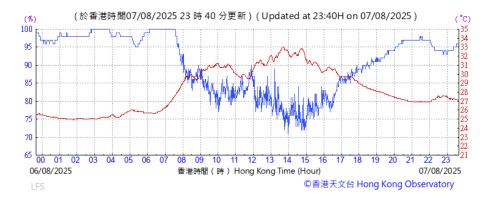


Wind Direction:

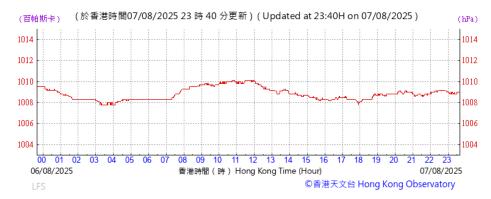


Temperature/humidity:

Pressure:

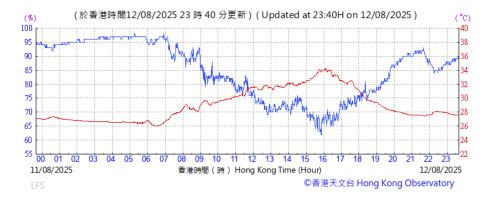


Wind Direction:

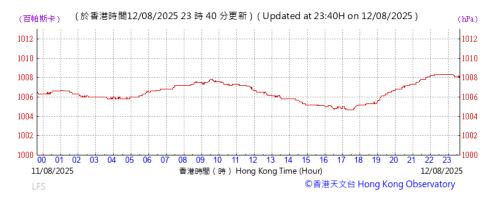


Temperature/humidity:

Pressure:

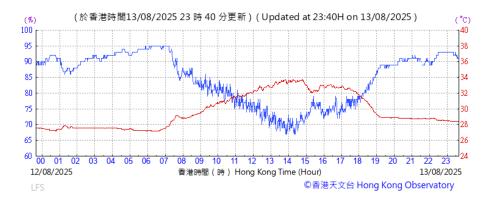


Wind Direction:

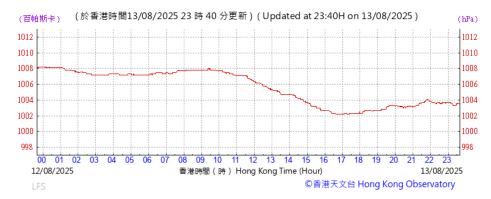


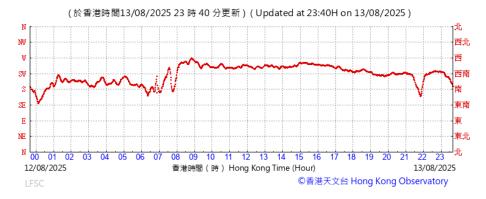
Temperature/humidity:

Pressure:

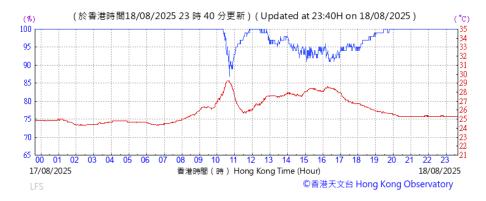


Wind Direction:

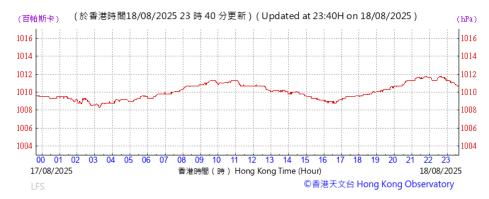



Temperature/humidity:

Pressure:



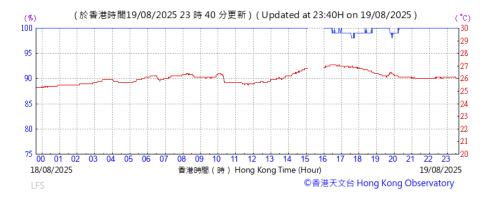
Wind Direction:



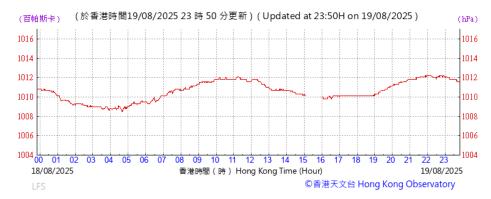
Temperature/humidity:

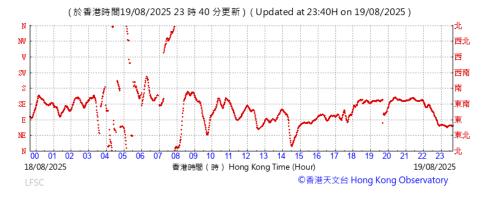


Pressure:

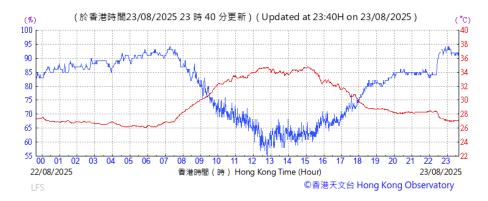


Wind Direction:

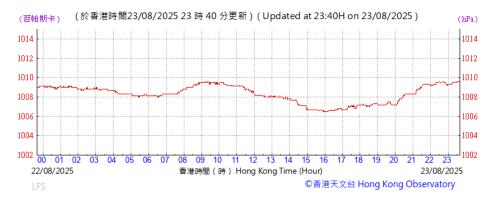



Temperature/humidity:

Pressure:

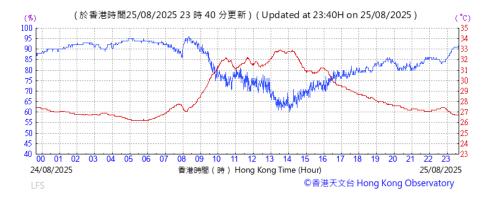


Wind Direction:

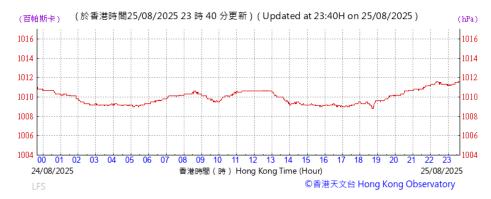


Temperature/humidity:

Pressure:

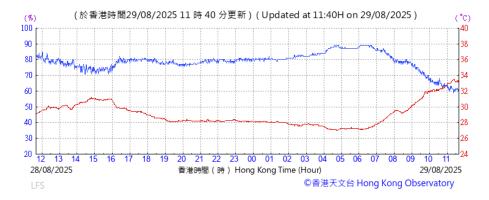


Wind Direction:

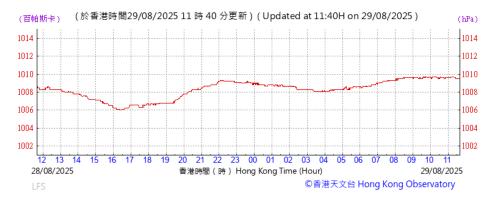


Temperature/humidity:

Pressure:



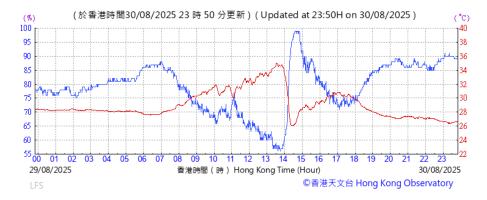
Wind Direction:



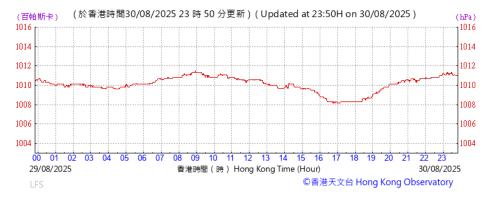

Temperature/humidity:

Pressure:

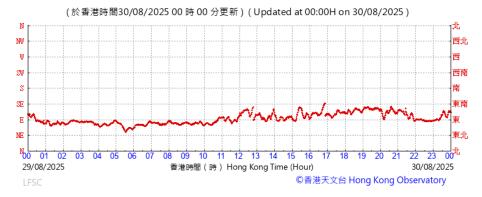
Wind Direction:



Wind Speed:


No information is provided by the Hong Kong Observatory.

30 August 2025


Temperature/humidity:


Pressure:

Wind Direction:

Wind Speed:

Appendix 2.4	Event and Action Plan for Air Quality

Event and Action Plan for Air Quality

Event		Α	ction	
	ET	IEC	ER	Contractor
Action level being exceeded by one sampling	 Identify source, investigate the causes of complaint and propose remedial measures; Inform Contractor, IEC and ER; Repeat measurement to confirm finding; and Increase monitoring frequency to daily. 	submitted by ET; 2. Check Contractor's working method; and	Notify Contractor.	 Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; and Amend working methods agreed with the ER as appropriate.
Action level being exceeded by two or more consecutive sampling	2. Inform Contractor, IEC and ER;3. Advise the Contractor and	submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET, ER and Contractor on possible remedial measures; 4. Advise the ET and ER on the effectiveness of the proposed remedial measures; and	 Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial measures properly implemented by the Contractor; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	investigate the causes of exceedance; 2. Submit proposals for remedial measures to the ER with a copy to ET and IEC within three working days of notification; 3. Implement the agreed proposals; and

Limit level exceeded by one sampling

- being 1. Identify source, investigate 1. Check monitoring data the causes of exceedance and propose remedial 2. Check measures:
 - 2. Inform Contractor, IEC, ER, 3. Discuss with ET and and EPD:
 - 3. Repeat measurement to confirm finding;
 - 4. Increase monitoring frequency to daily; and
 - 5. Assess effectiveness of Contractor's actions and keep IEC, EPD and ER informed of the results.

- submitted by ET;
- Contractor's working method;
- Contractor on possible remedial measures:
- 4. Advise the ER on the effectiveness of the proposed remedial measures; and
- remedial 5. Supervise implementation of remedial measures.

- 1. Confirm receipt of notification 1. of exceedance in writing;
- 2. Notify Contractor;
- properly implemented.
- Identify source(s) investigate the causes of exceedance:
- 3. Ensure remedial measures 2. Take immediate action to avoid further exceedance;
 - 3. Submit proposals remedial measures to ER with a copy to ET and IEC within three working days of notification;
 - 4. Implement the agreed proposals; and
 - 5. Amend if proposal appropriate.

Limit level being exceeded by two or more consecutive sampling

- 1. Notify IEC, ER, Contractor 1. and EPD:
- 2. Identify source;
- 3. Repeat measurement to confirm findings;
- 4. Increase monitorina frequency to daily:
- 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented:
- 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken;
- 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; and
- 8. If exceedance stops, cease additional monitoring.

- submitted by the ET;
- and Contractor on the potential remedial actions:
- Review remedial actions whenever necessary to 4. If exceedance continues, assure their effectiveness and advise the ER accordingly; and
- Supervise the implementation of remedial measures.

- Check monitoring data 1. Confirm receipt of notification 1. of exceedance in writing:
- 2. Discuss amongst ER, ET, 2. In consultation with the ET and IEC, agree with the Contractor 2. Take immediate action to on the remedial measures to be implemented:
 - Contractor's 3. Supervise the implementation of remedial measures; and
 - consider what portion of the work is responsible and instruct the Contractor to stop 4. Implement that portion of work until the exceedance is abated.

- Identify source(s) and investigate the causes of exceedance:
- avoid further exceedance;
- 3. Submit proposals remedial measures to the ER with a copy to the IEC and ET within three working days of notification;
- the agreed proposals;
- 5. Revise and resubmit proposals if problem still not under control: and
- 6. Stop the relevant portion of works as determined by ER the until the exceedance is abated.

Appendix 3.1 Calibration Certificates of Impact Noise Monitoring Equipment

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-17638-E0)

Microphone:

ACO 7052 (Serial No.:73912)

Preamplifier:

NTi Audio M2211 MA220 (Serial No.:10390)

Submitted by:

Customer:

Aurecon Hong Kong Limited

Address:

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223-231 Wai Yip Street, Kwun Tong,

Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

☑ Within (31.5Hz – 8kHz)

Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 27 January 2025

Date of calibration: 3 February 2025

Date of NEXT calibration: 2 February 2026

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Page 1 of 4

Date of issue: 3 February 2025

Certificate No.: APJ24-142-CC001

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

23.2 °C

Air Pressure:

1006 hPa

Relative Humidity:

68.5 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV240081

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)				App	lied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.1	±0.4

Linearity

Sett	ing of Uni	t-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.1	Ref
30-130	dBA	SPL	Fast	104	1000	104.1	±0.3
				114		114.1	±0.3

Time Weighting

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	JD.A	CDI	Fast	94	1000	94.1	Ref
30-130	dBA	SPL	Slow	94	1000	94.1	±0.3

Certificate No.: APJ24-142-CC001

Page 2 of 4

Frequency Response

Linear Response

Sett	ing of Unit	t-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class
Range, dB	Freq. Wo	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.2	±2.0
					63	94.2	±1.5
					125	94.1	±1.5
					250	94.1	±1.4
30-130	dB	dB SPL	Fast	94	500	94.1	±1.4
					1000	94.1	Ref
					2000	94.4	±1.6
1					4000	95.1	±1.6
					8000	94.7	+2.1; -3.1

A-weighting

Sett	ing of Uni	t-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.8	-39.4 ±2.0
					63	68.0	-26.2 ±1.5
					125	78.0	-16.1±1.5
					250	85.4	-8.6±1.4
30-130	dBA	SA SPL	Fast	94	500	90.9	-3.2 ±1.4
					1000	94.1	Ref
					2000	95.6	+1.2±1.6
					4000	96.1	+1.0±1.6
					8000	93.6	-1.1+2.1; -3.1

C-weighting

Sett	ing of Uni	t-under-t	est (UUT)	Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94	31.5	91.2	-3.0 ±2.0
			Fast		63	93.4	-0.8 ±1.5
		BC SPL			125	94.0	-0.2 ±1.5
					250	94.1	-0.0±1.4
30-130	dBC				500	94.2	-0.0 ±1.4
					1000	94.1	Ref
		9511			2000	94.3	-0.2 ±1.6
					4000	94.3	-0.8±1.6
					8000	91.7	-3.0 +2.1: -3.1

Certificate No.: APJ24-142-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.05
	125 Hz	± 0.10
	250 Hz	± 0.05
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ24-142-CC001

A PA PLOS

Page 4 of 4

Certificate of Calibration

Description:

Sound Level Meter

Manufacturer:

SVANTEK

Type No.:

971 (Serial No.: C119577)

Microphone:

ACO 7052E (Serial No.: 93026)

Preamplifier:

SV 18 (Serial No.:103880)

Submitted by:

Customer:

Aurecon Hong Kong Limited

Address:

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223-231 Wai Yip Street,

Kwun Tong, Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

✓ Within (31.5Hz – 4kHz)

Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 23 October 2024

Date of calibration: 24 October 2024

Date of NEXT calibration: 23 October 2025

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 24 October 2024

Certificate No.: APJ23-155-CC004

Page 1 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

25.6 °C

Air Pressure:

1006 **hPa**

Relative Humidity:

51.8%

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV240081

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)				Appl	ied value	UUT Reading,	IEC 61672 Class 1
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
25-125.2	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
25-125.2	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Sett	Setting of Unit-under-test (UUT)				Applied value		IEC 61672 Class 1
Range, dB	Freq. V	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
25-125.2	dBA	SPL	Fast	0.4	1000	94.0	Ref
23-123.2	UDA	SPL	Slow	94	1000 NO AIR TESTIN	MBOR, 94.0	±0.3

Certificate No.: APJ23-155-CC004

Page 2 of 4

Frequency Response

Linear Response

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.3	±2.0
					63	94.2	±1.5
					125	94.1	±1.5 ±1.4
25-125.2	dB	SPL	Fast	94	250	94.1	
23-123.2	uБ	SFL	rast	94	500	94.1	±1.4
					1000 94.0	Ref	
					2000	93.7	±1.6
					4000	93.2	±1.6

A-weighting

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	55.0	-39.4 ±2.0
			63	68.1 -26.2 ±	-26.2 ±1.5		
					125	78.1	
25-125.2	dBA	dBA SPL	Fast	94	250	85.5	
25-125.2	UDA	SIL	rast	94	500	90.8	-3.2 ±1.4
					1000	94.0	Ref
					2000	94.9	+1.2 ±1.6
					4000	94.3	$+1.0\pm1.6$

C-weighting

Sett	Setting of Unit-under-test (UUT)			Applied value		IEC 61672 Class 1
Range, dB	Freq. Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				31.5	91.4	-3.0 ±2.0
				63	93.4	-3.0 ±2.0 -0.8 ±1.5 -0.2 ±1.5 -0.0 ±1.4
				125	94.0	
25-125.2	dBC SPL	Fast	94	250	94.1	
25-125.2	UBC SPL	rast	Fast 94 500	94.1	-0.0 ± 1.4	
				1000	94.0	Ref
				2000	93.6	-0.2 ±1.6
				4000	92.5	-0.8 ±1.6

Page 3 of 4

Certificate No.: APJ23-155-CC004

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong
Tel: (852) 2668 3423 Fax:(852) 2668 6946
Homepage: http://www.aa-lab.com E-mail:inquiry@aa-lab.com

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.05
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Page 4 of 4

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

RION

Type No.:

NL-53 (Serial No.: 01130784)

Microphone:

UC-59 (Serial No.: 24908)

Preamplifier:

NH-25 (Serial No.:33675)

Submitted by:

Customer:

Aurecon Hong Kong Limited

Address:

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223-231 Wai Yip Street, Kwun Tong,

Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

☑ Within (31.5Hz – 4kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 26 February 2025

Date of calibration: 27 February 2025

Date of NEXT calibration: 26 February 2026

Calibrated by: _____

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 27 February 2025

Certificate No.: APJ24-154-CC003

Page 1 of 4

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

25.8°C

Air Pressure:

1006 hPa

Relative Humidity:

54.9 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV240081

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Sett	Setting of Unit-under-test (UUT)			App	Applied value		IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq. V	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130		A SPL	Fast	94	1000	94.0	Ref
	dBA			104		104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. Wo	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
20.120	ID 4	CDI	Fast	0.4	1000	94.0	Ref
30-130 dl	dBA SPL		Slow	94	1000	94.0	±0.3

Certificate No.: APJ24-154-CC003

Page 2 of 4

Frequency Response

Linear Response

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class
Range, dB	Freq. We	ighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.2	±2.0
					63	94.2	±1.5
					125	94.2	±1.5 ±1.4
	175	CDI		0.4	250	94.1	
30-130	dB	SPL	Fast	94	500	94.1	±1.4
	,				1000	94.0	Ref
					2000	93.7	±1.6
					4000	92.5	±1.6

A-weighting

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. V	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
			31.5	54.9	-39.4 ±2.0		
				63	68.0	-26.2 ±1.5	
			*		125	78.0	-16.1±1.5
	TD: 4	CDI		0.4	250	85.5	-8.6 ± 1.4
30-130	dBA	SPL	SPL Fast	94	500	90.8	-3.2±1.4
					1000	94.0	Ref
					2000	94.9	
					4000	93.5	+1.0±1.6

C-weighting

Setti	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
			31.5	91.2	-3.0±2.0		
					63	93.4	-0.8 ±1.5
					125	94.0	-0.2 ±1.5 -0.0 ±1.4
	ID G	CDI		0.4	250	94.1	
30-130	dBC	SPL	Fast	94	500	94.1	-0.0 ±1.4
					1000	94.0	Ref
					2000	93.5	-0.2 ±1.6
					4000	91.7	-0.8 ±1.6

Certificate No.: APJ24-154-CC003

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.05
	125 Hz	± 0.10
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Page 4 of 4

Certificate of Calibration

for

Description:

Sound Level Calibrator

Manufacturer:

RION

Type No .:

NC-74

Serial No.:

34615222

Submitted by:

Customer:

Aurecon Hong Kong Limited

Address:

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223-231 Wai Yip Street, Kwun Tong,

Kowloon, Hong Kong

Upon receipt for calibration,	the instrument v	vas found	to be:
-------------------------------	------------------	-----------	--------

Within

Outside

the allowable tolerance.

The test equipments used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 14 April 2025

Date of calibration: 15 April 2025

Date of NEXT calibration: 14 April 2026

Calibrated by:

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 15 April 2025

Certificate No.: APJ25-005-CC001

Page 1 of 2

1. Calibration Precautions:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Specifications:

Calibration check

3. Calibration Conditions:

Air Temperature:	24.5 °C
Air Pressure:	1006 hPa
Relative Humidity:	64.5 %

4. Calibration Equipment:

Test Equipment	Туре	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV240081	HOKLAS
Sound Level Meter	RION NA-28	30721812	AV240109	HOKLAS

5. Calibration Results

5.1 Sound Pressure Level

Nominal value	Accept lower level dB	Accept upper level	Measured value
dB		dB	dB
94.0	93.6	94.4	93.7

Note:

The values given in this certification only related to the values measured at the time of the calibration.

Certificate No.: APJ25-005-CC001

Page 2 of 2

Homepage: http://www.aa-lab.com

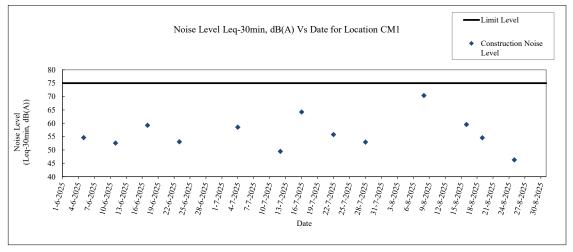
Appendix 3.2	Impact Noise M	onitoring Data	

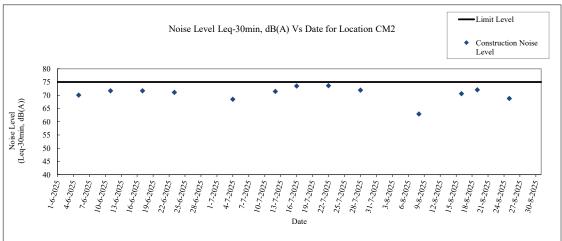
Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team

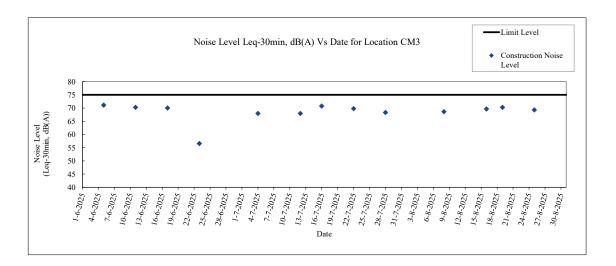
aurecon

Noise Monitoring Resu	dt.																											aure	COII	
2222 2 222 222 2 2 2 2 2 2 2 2 2 2 2 2 2	Opti) it													_																
H 08	100 11	2.0				三- 洋) 章(0) (()				(%-),)) 25(0)(()	(m-),)) m(3 m) (comm) com() ((mem(com()) (()) /=(2=(0)(()	222/0(1002(2272(222(((2-),)) 22(())()	_																
08-08-2025			Reading (1) dv 68.3	Reading (2) 67.9	Reading 67.6	(3) Reading		ding (5) 8.0	Reading (6) 66.0	67.6		58.7		4			ding(2) 1	Reading (3) 59.2	Reading (4) 60.7	Reading (5) 61.2	Reading (6) 53.9	Average L9 59.3		Reading(1) 75.2	Reading (2) 76.7		Reading (4) 74.5	Reading (5) 73.9	Reading (6)	Average L10 74.9
16.08-2025	15:30 - 16: 9:45 - 10:			55.7	58.3			0.4	61.2	67.6 59.2	70.6 62.2	58.7 58.7	70.4 59.5	(2)	60.6 52.9			54.2	59.5	58.4	58.6	56.9			76.7 59.1	74.1 61.2	74.5 61.9	73.9 63.2	65.6	62.1
19-08-2025	9:05 - 9:3			58.0	58.2			7.6	55.2	57.1	60.1	58.7	54.5	(2)	52.8			51.9	52.5	52.4	52.0	52.4		58.6	59.7	59.7	59.0	58.7	58.9	59.1
25-08-2025	13:30 - 14:			57.9	54.1			3.3	50.9	55.9	58.9	58.7	46.3	-	56.6			50.6	50.6	49.8	49.9	52.6		63.1	62.3	60.4	59.9	59.6	52.0	60.6
	1											(211 . NO. 11 / 01 (00 Int N T N T N T N T	57.8	_																
													•	-																
) 49 1) ((2-),)) 2(0))(()) 22) 1) (2-),)) 2(0)(()																			
										70.6	58.9																			
2 22 26 22 (6 2/10)	ota) s		_								1			-																
1 01	100 H	2.0	Reading (1)	Reading (2)		三·声) 章(0)(() (3) Reading	1/4) Read	ding(5)	Reading (6)	(=-).)) =(0))(()	(m-),)) m (3 m- (comm) com () ((mass (com (()) (()) /=(==((0)(())(()	**************************************	\vdash	Reading	(1) Por	ding(2)	Reading (3)	Reading (4)	Reading (5)	Reading (6)	Average L9	0	Reading(1)	Reading (2)	Reading (3)	Reading (4)	Reading (5)	Reading (6)	Average L10
08-08-2025	14:00 - 14:	0 Clou		59.9	59.8			9.3	59.8	59.9	62.9	64.2	measured level s baseline level	1	54.2			53.9	54.7	51.6	52.1	53.8		66.2	64.9	65.8	65.7	66.1	67.2	66.0
16-08-2025	9:35 - 10:			68.2	68.3			8.7	68.0	68.5	71.5	64.2	70.6	(2)	62.5		50.8	62.6	62.0	60.0	61.7	61.7			74.7	74.3	74.1	76.2	74.7	75.3
19-08-2025	9:45 - 10:			70.1	68.2			0.5	68.7	69.7	72.7	64.2	72.0	1 ''	61.5		62.3	61.9	61.5	62.1	61.6	61.8		72.4	73.8	73.8	72.0	74.0	73.1	73.2
25-08-2025	14:10 - 14:	t0 Fin	64.9	67.8	66.9	68.3	6	7.1	66.8	67.1	70.1	64.2	68.8		56.6		60.4	61.0	60.7	60.5	59.4	60.0		72.7	73.7	73.6	75.8	73.7	73.6	74.0
											•	(200 , mpmm/ 001 (0000 pmm m m [m20)	68.6															-		
) 49 1) ((2-),)) 20()) (()) 22) 1) (2-),)) 20(0)(()																			
										72.7	62.9																			
2272 2222 2710	OT 1																													
						E-1E) (E(D) (()					1			٦.																
1 01	10) 11	2.0	Reading (1)	Reading (2)	Reading		(4) Read	ding(5)	Reading (6)	(=-).)) =(0))(()	(n-),)) m(3 no (mm)mm() ((mmm(mm)()) (()) /=(==((0)(()	222/0(1022(2222((2-),)) 2(())	-	Reading	(1) Res	ding(2)	Reading (3)	Reading (4)	Reading (5)	Reading (6)	Average L9	.0	Reading (1)	Reading (2)	Reading (3)	Reading (4)	Reading (5)	Reading (6)	Average L10
08-08-2025	14:43 - 15:	13 Clou	dy 66.1	64.2	64.9	62.8	6	7.1	67.0	65.6	68.6	71.5	measured level s baseline level	1	63.1		80.6	61.1	59.5	63.3	64.6	62.4	7	69.1	67.1	67.9	65.7	71.0	69.7	68.8
16-08-2025	10:10 - 10:		dy 65.5	68.0	66.4			6.8	66.2	66.7	69.7	71.5	measured level s baseline level	(2)	54.9		90.4	58.4	58.6	57.4	57.1	58.1			74.7	73.0	74.3	73.7	73.5	73.9
19-08-2025	10:20 - 10:			66.3	68.2			8.5	67.6	67.3	70.3	71.5	measured level s baseline level		61.9			62.0	61.5	61.6	62.2	61.9		73.4	73.1	73.9	73.9	74.0	73.7	73.7
25-08-2025	15:00 - 15:	00 Fin	66.9	65.3	66.3	66.7	6	7.1	65.0	66.3	69.3	71.5	measured level s baseline level	_	57.7		58.1	59.2	58.1	58.6	54.6	57.9		75.0	73.3	73.4	74.3	74.5	73.5	74.0
												(2011 , 10(1111/011 (0010 (1111 11 (1111 11)	69.5																	
) 49 1) (8-1,1) 2(0)(()) 223 1) (25-1,1) 2001(()																			
										70.3	(((((((((((((((((((
										70.0	02.0																			
2272 [22] 22[] 2/1(0)	qt) -																													
2.00	100 11	2.0	N. W.W.			2-岸) 章(0)(()				(E-),)) ±(0))(()	(n-),)) mpso (maymo) (mm(oma()) (()) /=(===(=2=(0))(()	**************************************	Ъ																
			Reading (1)		Reading				Reading (6)						Reading			Reading (3)	Reading (4)	Reading (5)	Reading (6)	Average L9		Reading (1)	Reading (2)		Reading (4)		Reading (6)	Average L10
08-08-2025	13:36 - 14:			68.2	69.1			9.1	69.4	69.1	72.1	75.0	measured level s baseline level	4	63.5			61.9	61.1	61.2	63.4	62.0		75.7	75.8	75.7	76.2	76.3	76.6	76.1
16-08-2025	16:35 - 17:			59.7 58.7	61.6			1.2	60.8 58.8	61.1 59.0	64.1 62.0	75.0 75.0	measured level 5 baseline level	(2)	54.2		55.1 50.3	56.1 50.0	55.2 52.7	56.6 52.7	57.5 52.9	55.9		73.3	64.8	67.1 62.5	69.6	66.7	65.4	68.9
19-08-2025 25-08-2025	16:00 - 16:			58.7 57.2	60 57.4			7.9	58.8 58.2	59.0 57.8	62.0 60.8	75.0 75.0	measured level s baseline level measured level s baseline level	4	52.4			51.2	52.7 52.5	52.7 52.1	52.9 52.6	52.0 51.6		62.9	63.2	62.5	64.9	63.2	63.5 63.6	63.6 63.4
25-08-2025	16:00 - 16:	90 Hill	6 57.0	57.2	57.4	58.6	5.	7.9	58.2	57.8	60.8	/5.0 (201 . NO NY/ 01/ 00/10 NY NY NY NY	measured level 5 baseline level	+	50.0		49.3	51.2	02.0	52.1	52.0	51.6	—	62.6	63.7	62.9	64.3	63.2	63.6	63.4
												(-)		-																
) 49 1) (2-),)) 200) (()) 22 1) (2-),)) 20(0)(()																			
										72.1	60.8																			
2 22 2 2 22 (2 2 1 0 (0(1) 2													-																
11 01	100 11	8.6	Reading (1)	Reading (2)		三·声) 準(0)(() (3) Reading		ding (5)	Reading (6)	(=-),)) =(0)(()	(n-),)) m(3 no (mm)/m() ((mm)(mm/()) (()) /=(2=(0)(()	222/0(1002(2272(22(((2-),)) 20())(()	\vdash					Reading (4)	Reading (5)	1	Average L9			T	Reading (3)	T =	Reading (5)	Reading (6)	
06-08-2025	14:00 - 14:	n Cin		Reading(2)	Reading 64.1			ding(5)	Reading (6) 64.5	64.0		47.7	63.9	-1	Reading 61.0			Reading (3)	Reading (4)	Reading (5) 61.5	Reading (6)	Average L9		Reading(1) 66.1	Reading (2) 67.1	Reading (3)	Reading (4) 65.9	Reading (5) 65.5	Reading (6) 65.5	Average L10 66.2
12-08-2025	11:00 - 11:			63.4	63.7			3.8	64.4	63.7		47.7	63.6	(2)				61.2	60.4	61.5	62.7	61.3			65.6		66.3	66.0	66.3	66.1
18-08-2025	11:10 - 11:			64.5	63.7				64.0	63.8	<u> </u>	47.7	63.7	┧ '~'	60.2		80.4	59.7	59.2	58.5	60.8	60.0	(-)	66.7	67.9	66.1	66.5	67.7	68.2	67.3
29-08-2025	13:23 - 13:			61.7	62			2.1	62.6	62.2		47.7	62.0	1	59.1			59.1	59.3	59.0	59.4	59.1	7	65.0	64.1	64.2	64.8	65.1	65.7	64.9
		•		•								(2011 , HEREN/ 01 (0011 E HEREN 1211 (63.3											-			-	-		—

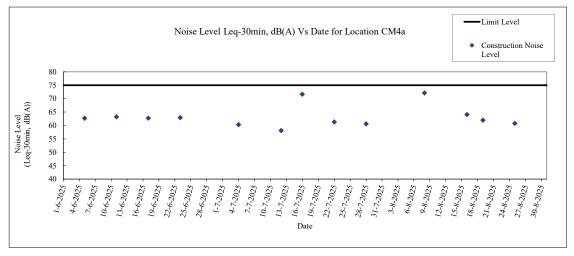
) 49 1) (5-),)) 20))(()) 23 1) (5-),)) 20))(() 64.0 62.2

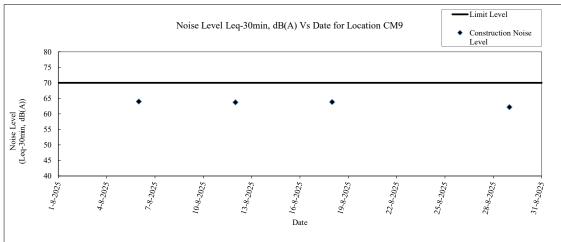

aurecon

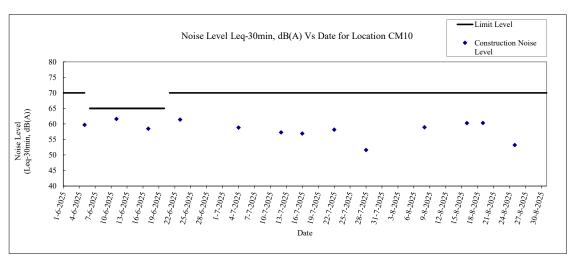

Noise Morinoling Hesuit				dalecon
E NOT THE EZZIFE TO 1 (00 (00) TO)				
x 0	(x-),)) =(0) (() (x-),)) =(3 = (m=1) =(0 = (0 = (0 = (0 = (0 = (0 = (0 = (0) /=(===(=2=(0)(()	**************************************	
Reading (1) Reading (2) Reading (3) Reading (4) Reading (5) Reading (6)				Reading (1) Reading (2) Reading (3) Reading (4) Reading (5) Reading (6) Average L90 Reading (1) Reading (2) Reading (3) Reading (4) Reading (5) Reading (6) Average L90
08-08-2025 10:50 11:20 Cloudy 59.0 59.0 59.0 58.7 59.1 58.8	58.9	60.9	measured level s baseline level	56.9 57.0 56.9 56.3 57.3 57.2 56.9 61.5 60.7 61.2 61.0 60.3 61.0
16-08-2025 9:05 9:35 Cloudy 59.6 59.4 61.1 59.6 59.4 61.9 19-08-2025 11:23 11:53 Cloudy 63.2 64.6 63.7 62.5 63.3 64.2	60.3	60.9 60.9	measured level s baseline level	(2) 58.6 57.4 58.8 57.5 57.2 58.8 58.1 (3) 63.3 62.4 64.2 63.8 63.7 62.2 63.3 60.7 62.7 61.5 59.4 60.6 60.9 61.1
19-08-2025 11:23 - 11:33 Cloudy 63:2 64.6 63.7 62.5 63.3 64.2 25-08-2025 16:50 - 17:20 Fine 62.0 62.2 61.8 61.7 60.6 61.0	61.6	60.9	60.3 53.2	60.7 62.7 61.5 59.4 60.6 60.9 61.1 66.1 66.2 65.5 65.6 65.7 67.5 66.0 55.1 58.3 57.1 57.0 57.8 57.1 57.6 64.2 64.0 63.0 63.4 63.3 64.0 63.7
40-00-40-40 1 100 04-0 04-0 04-0 04-0 04	02.0	(211 , 10111/01(0010) 11/11/1 (121(58.2	30.1 30.0 37.1 37.0 37.0 37.1 37.0 00.1 00.0 00.0 00.0 00.0 00.0 00.0
) 49 1) (2-),)) 20) (()) 23 1) (2-),)) 20) (()	_		
	63.6 58.9			
2.207 ((2.20((0.1) 20) 20) ((5-20) 20			1	
N 0: N9 N N 0 NN (n-p) N(0) (1) Reading (2) Reading (3) Reading (4) Reading (5) Reading (6)	(%-),)) 25(0) (f) (%-),)) 25(3 10-(1000) (1000) (1000) (1000) (1000)) /=(==((0)(()	222/0(1002(221)(221()(2-),)) 22())(()	Reading (1) Reading (2) Reading (3) Reading (4) Reading (6) Reading (6) Average L90 Reading (1) Reading (2) Reading (3) Reading (4) Reading (6) Reading (6) Average L90 Reading (7) Reading (8) Readin
06-08-2025 15:00 15:30 Cloudy 64.0 62.8 62.9 62.9 63.7 63.5	63.3 66.3	71.5	measured level s baseline level	54.1 54.2 54.4 54.1 53.0 54.6 54.1 72.1 70.5 71.8 71.4 71.5 69.8 71.3
12-08-2025 15:30 16:00 Fine 65.5 63.7 63.2 62.5 63.5 62.9	63.7 66.7	71.5	measured level s baseline level	(2) 56.7 54.2 54.4 52.7 54.7 52.5 54.4 (II) 73.3 74.2 73.9 75.3 74.2 74.2 74.2
18-08-2025 12:00 - 12:30 Fine 62.3 61.3 61.7 62.9 61.3 62.5	62.0 65.0	71.5	measured level s baseline level	50.6 49.8 51.4 51.2 50.6 51.5 50.9 71.0 72.4 71.3 71.9 71.6 71.7 71.7
29-08-2025 10:47 - 11:17 Fine 62.3 63.1 63 61.1 63.5 66.3	63.5 66.5	71.5	measured level s baseline level	50.5 50.9 49.9 50.8 51.0 54.4 51.5 73.6 74.5 75.0 72.6 74.8 74.9 74.3
		(281, 55 82/01(0005 82 81 81 82)	63.1	
) 49 1) (2-1) (20) (1) (2-1) (2-1) (20) (1)	_		
	63.7 62.0	_		
	02.7	_		
2 27 26 22 (E 2/10 (Q2) 22				
N OE NO N N N N N N N N N N N N N N N N	(E-),)) IN (3 NO (CONT) (MIN) (MIN) (ONIX()) () /=(==(=2=(0))(()	****/*********************************	
Reading (1) Reading (2) Reading (3) Reading (4) Reading (5) Reading (6)	(三-),)) 型(()) (()			Reading(1) Reading(2) Reading(3) Reading(4) Reading(5) Reading(6) Average L90 Reading(2) Reading(3) Reading(4) Reading(5) Reading(6) Average L90
06-08-2025 16:20 - 16:50 Cloudy 54.7 54.4 55.9 54.5 55.5 55.7	55.2 58.2	51.6	57.1	53.4 52.0 52.9 52.1 52.2 52.2 52.5 59.7 60.3 59.3 60.2 60.9 59.9 59.9 (2) 54.1 52.5 51.3 51.3 50.8 51.1 52.0 (8) 57.7 56.0 61.7 55.9 53.7 53.8 57.4
12-08-2025 16:20 - 16:50 Fine 55.8 53.8 54.6 52.9 52.1 52.2 18-08-2025 13:30 - 14:00 Fine 52.8 52.5 53.9 53.4 53.5 53.2	53.8 56.8 53.2 56.2	51.6 51.6	55.2 54.4	(x) 94.1 32.5 51.3 51.5 50.6 51.3 51.2 51.2 56.7 56.5 57.1 55.3 56.3 56.3 56.3 56.4
10-00-2025 13:30 - 14:00 Fills 52:0 52:5 53.3 53.4 53.5 53.2 53.9 53.4 53.5 55.4 53.5 55.4 53.5 56.0 55.4	55.9 58.9	51.6	58.1	55.0 54.4 54.8 53.8 53.7 53.4 54.2 58.6 58.3 58.2 57.3 59.9 59.7 58.8
		(2011 , 10 1111 / 011 (00 10 111 111 111 112 11 (56.2	
			•	
) 49 1) (2-),)) 20) (()) 229 1) (2-),)) 20) (()			
	55.9 53.2	_		
※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※				
(N. W.) W(A) (1)				
H OR H D D H D D D D D D D D D D D D D D D	(N-),)) 200)(() (N-),)) 2(330-(2003)200)(2003(0))(() /=(==((1))(()	===/0(100=(==4=(=2=((=-),)) =(())(()	Reading (1) Reading (2) Reading (3) Reading (4) Reading (5) Reading (6) Average L90 Reading (1) Reading (2) Reading (3) Reading (4) Reading (6) Average L90 Reading (7) Reading (8) Reading (9) Readin
08-08-2025 15:50 - 16:20 Cloudy 54.7 53.2 50.4 53.3 53.5 53.2	53.2	54.4	measured level s baseline level	51.9 48.3 47.9 48.6 49.0 49.8 49.5 60.6 57.0 53.7 58.5 57.3 56.1 57.7
16-08-2025 10:00 - 10:30 Cloudy 49.2 49.1 49.8 51.0 49.4 49.1	49.7	54.4	measured level s baseline level	(2) 45.6 45.5 44.6 45.7 44.9 45.1 45.3 (E) 52.6 53.3 52.9 53.6 52.7 53.4 53.1
19-08-2025 15:33 - 16:03 Fine 51:1 56.8 56.3 55:3 50.9 57:1	55.2	54.4	47.7	49.6 52.5 51.3 49.7 49.3 49.9 50.5 52.8 63.4 61.2 63.0 52.3 67.5 62.8
25-08-2025 11:55 - 12:25 Fine 51.1 53.3 53 52.0 50.6 51.0	52.0	54.4 (211 . NO 111/01/01/01/01/01/01/01/01/01/01/01/01/	measured level s baseline level	45.2 46.2 46.5 45.5 46.2 46.0 46.0 53.8 53.1 52.9 54.1 54.0 53.0 53.5
		(2nd , informs 611) description of in2nd	50.6	
) 49 1) (2-),)) 20) (()) 229 1) (2-),)) 220 (()			
	55.2 49.7			
2.237 ([2.21 ([2/ 1 (0 (qt) 2-				
N 0: 20	(N-),)) 20(0) (() (N-),)) 21(3:35-(0012)200() ((2012(0)) (() /=(==((0))(()	### (10 10 10 10 11 11 11 11 11 11 11 11 11 1	Reading (1) Reading (2) Reading (3) Reading (4) Reading (5) Reading (6) Average L50 Reading (7) Reading (7) Reading (8) Reading (8) Average L50
08-08-2025 15:10 - 15:40 Cloudy 55.3 57.9 57.7 57.0 54.4 55.2	56.5 59.5	47.4	59.2	
15-08-2025 10:35 11:05 Cloudy 54.5 54.3 54.8 56.4 55.7 54.0	55.0 58.0	47.4	57.6	22.0 93.2 96.3 94.4 91.3 92.2 94.0 97.5 90.7 93.6 90.4 95.6 95.0 93.1 [2] 51.4 52.5 51.8 51.8 52.0 51.7 51.9 (8) 57.6 58.7 58.2 58.9 58.6 57.7 58.3
19-08-2025 15:00 15:30 Fine 55:1 53.9 55.5 54.9 54.4 61.0	56.6 59.6	47.4	59.4	52.8 44.8 51.8 51.4 50.9 51.2 51.4 58.6 60.6 59.5 58.8 58.8 69.6 63.5
25-08-2025 13:20 - 13:50 Fine 53.4 54.5 54.3 54.7 53.7 55.0	54.3 57.3	47.4	56.8	52.4 49.9 51.6 52.2 50.8 50.4 51.3 58.1 58.4 56.8 57.7 57.8 58.6 57.9
		(255 . NO 25/ 01/ 0000 13/ N/ 12//	58.3	

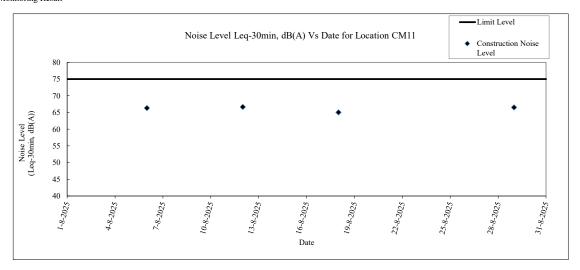

) 49 1) (3-),)) ±(0) (()) ±(0 1) (1-),)) ±(0) (() 59.6 57.3 Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team Noise Monitoring Result

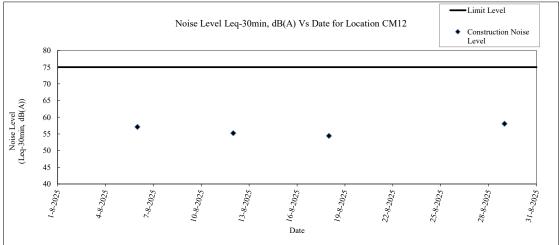
2.24 24 (2.24 (2.24 (4.2) 22				-
图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	(N-),)) 20(0))(() (N-),)) 20(3.30-(2003)200() (N2000(4003)(0))(()) /=(2==(=2=(()))(() ====/	12/01 1002 (122 ()(2-).)) 2(()) (()	Reading (1) Reading (2) Reading (3) Reading (4) Reading (6) Reading (6) Average L50 Reading (1) Reading (2) Reading (3) Reading (4) Reading (6) Average L50
08-08-2025 14:30 15:00 Cloudy 65:9 72.2 71.7 72.0 73.2 72.6	71.8 74.8	64.7	74.3	
16-08-2025 11:10 - 11:40 Cloudy 70.5 69.5 70.2 70.0 68.8 68.0	69.6 72.6	64.7	71.8	(2) 62.9 61.7 62.3 61.9 62.4 62.2 62.3 (8) 71.7 71.3 72.1 70.9 71.4 70.5 71.3
19-08-2025 14:25 - 14:55 Fine 66.7 65.4 64.3 65.9 68.0 68.9	66.8 69.8	64.7	68.2	63.8 63.4 63.2 63.5 63.8 66.7 64.3 70.0 68.3 65.2 73.3 73.7 71.3 71.2
25-08-2025 13:55 - 14:25 Fine 66.1 67.7 67.9 66.4 66.7 67.9	67.2 70.2	64.7 (2011, NEWEY/01(0000ENEWN(N2M)	68.7 56.6	63.5 63.6 63.2 62.6 63.5 62.2 63.1 71.6 71.9 70.7 71.5 70.4 71.1 71.2
		(211, 10111/01(011011111111111111111111111111	56.6	4
) 49 1) (X-),)) 200) (()) 223 1) (X-),)) 200) (()			
	74.8 69.8			
259 20 22 (E 7/10 (OE) 3/ (E 7/20 (OE) 3/ (E 7/20 (OE) 3/ (OE) 3/ (OE) 3/				٦
〒 0	(N -),)) 20()) (() ((N -),)) 21(3 20 (200 N) (200 N) (200 N) (400 N) (600 N) (600 N) (600 N) (600 N)) /=(2=((0))(() ====/	52/04[1052(523/2([22([)(2-),)) 25([))(()	Reading (1) Reading (2) Reading (3) Reading (4) Reading (6) Reading (6) Average L90 Reading (1) Reading (2) Reading (3) Reading (4) Reading (6) Average L90 Reading (7) Reading (8) Reading (9) Readin
08-08-2025 11:20 - 11:50 Cloudy 56.9 56.1 54.1 53.4 53.9 52.7	54.8	71.9	measured level s baseline level	53.1 52.7 52.1 51.6 51.4 51.1 52.1 62.8 59.5 56.3 55.4 57.9 55.2 58.8
16-08-2025 11:45 12:15 Cloudy 60.6 62.3 61 60.5 61.9 61.1	61.3	71.9	measured level s baseline level	(2) 59.0 58.9 59.5 59.4 57.0 57.9 58.7 (#) 63.6 65.6 64.1 64.3 63.1 64.7 64.3
19-08-2025 15:15 - 15:45 Fine 59.4 61.9 61.9 59.8 60.0 60.6 25-08-2025 11:00 - 11:30 Fine 65.9 64.4 65.5 63.1 63.4 62.0	60.7 - 64.3	71.9 71.9	measured level s baseline level measured level s baseline level	57.9 56.0 57.5 56.5 58.0 57.1 57.2 56.8 63.7 63.5 63.6 64.9 63.1 64.2 67.5 62.1 61.7 62.5 60.8 60.8 60.0 61.4 69.0 68.0 68.5 66.2 67.3 64.4 67.5
25-06-2025 11.00 11.30 Fills 65.9 64.4 63.5 65.1 65.4 62.0	64.3	(211 . 101111/01/00101111/11/12/	60.3	92.1 01.7 02.3 00.8 00.8 00.9 00.9 01.4 02.9 08.0 06.5 06.2 07.3 04.4 07.5
	-	/ and information of any		
) 45 1) (三-),)) 至(0) (()) 至(3 1) (三-),)) 至(0) (()			
	64.3 54.8			
2 22 2 22 (E 2/10/ (Qt) 20				
X 00	(x-),)) = (0) (() (x-),)) = (3x) (mx) = (0xx(0) (())) /5(25)(325)(0)(() 255/	EN OF 1082 (EN THE END (EN THE END (EN THE EN	1
Reading(1) Reading(2) Reading(3) Reading(4) Reading(5) Reading(6)				Reading(1) Reading(2) Reading(3) Reading(4) Reading(6) Reading(6) Average L90 Reading(1) Reading(2) Reading(3) Reading(4) Reading(6) Average L10
06-08-2025 17:15 17:45 Cloudy 51.7 55.0 58.5 48.6 49.3 52.3	54.0 57.0		measured level s baseline level	46.3 46.4 46.8 46.5 46.7 46.5 46.5 55.2 55.9 62.4 52.6 52.1 54.6 57.6 (2) 47.5 47.5 47.5 47.7 47.8 47.6 47.4 47.5 (2) 52.6 52.0 52.1 54.6 57.6
11-08-2025 17:02 - 17:32 Sunny 50.9 51.6 49.6 51.2 49.8 52.0 18-08-2025 16:23 - 16:53 Fine 52.2 53.2 52.6 53.0 53.1 53.5	50.9 53.9 53.0 56.0	57.2 57.2	measured level s baseline level measured level s baseline level	(2) 47.5 47.6 47.7 47.8 47.6 47.4 47.6 (3) 53.3 53.6 51.2 50.8 51.4 54.2 52.6 40.2 50.2 40.2 50.0 51.2 51.1 50.2
29-98-2025 15:30 - 16:00 Fine 51.4 52.3 51.6 51.3 52.1 52.2	51.8 54.8	57.2	measured level 5 baseline level	48.2 49.3 47.2 48.4 50.1 49.5 48.9 53.1 54.1 53.6 53.1 54.1 55.2 53.9
		(285 , NO 55/05(0000) NO NE 125(55.4	
	1 49 31 65-1 11 990 (1) 1 1993 (1) 65-1 11 990 (1)			
) 40 1) (E-),)) E(0) (()) ED 1) (E-),)) E(0) (()			
2 22 22 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25				
N OF 100 NO	(N. 1.11 MO2141) (N. 1.11 MO200 MO2000 (N. 1.11 MO200) (NORTH NORTH) III)	ENT OF LOWING WATER PRINCE N. J. J. MICO. J. C. J.	
※ 1	(a-)')) = (0) (() (a-)')) = (a-)'))		na/ 0q 100m(navang n2m(((n-),)) = (()) (()	Reading(1) Reading(2) Reading(3) Reading(4) Reading(5) Reading(6) Average LSO Reading(1) Reading(1) Reading(2) Reading(3) Reading(4) Reading(6) Reading(6) Average LSO
S @ Mg S S 0.33 (S-F) M(g)(1) (S-F) M(g	47.4 50.4	56.6	measured level s baseline level	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.0 50.0 51.5 51.5 52.3 49.0 51.7
※ 1		56.6 56.6		
1	47.4 50.4 53.0 56.0	56.6 56.6 56.6 56.6	measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.0 50.0 51.5 51.5 52.3 49.0 51.7 (2) 47.3 48.4 48.8 47.5 47.9 47.1 47.9 (2) 59.2 59.2 59.1 59.8 59.2 59.8 59.4
1 B m 1 1 D TO Reside(1) Reside(2) Reside(2) Reside(3) Reside(3) Reside(4) Reside(4) <td>47.4 50.4 53.0 56.0 49.7 52.7</td> <td>56.6 56.6 56.6</td> <td>measured level s baseline level measured level s baseline level measured level s baseline level</td> <td>45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5</td>	47.4 50.4 53.0 56.0 49.7 52.7	56.6 56.6 56.6	measured level s baseline level measured level s baseline level measured level s baseline level	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5
1 B m 1 1 D TO Reside(1) Reside(2) Reside(2) Reside(3) Reside(3) Reside(4) Reside(4) <td>47.4 50.4 53.0 56.0 49.7 52.7 51.5 54.5</td> <td>56.6 56.6 56.6 56.6</td> <td>measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level</td> <td>45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5</td>	47.4 50.4 53.0 56.0 49.7 52.7 51.5 54.5	56.6 56.6 56.6 56.6	measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5
1 B m 1 1 D TO Reside(1) Reside(2) Reside(2) Reside(3) Reside(3) Reside(4) Reside(4) <td>47.4 50.4 53.0 56.0 49.7 52.7</td> <td>56.6 56.6 56.6 56.6</td> <td>measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level</td> <td>45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5</td>	47.4 50.4 53.0 56.0 49.7 52.7	56.6 56.6 56.6 56.6	measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5
1 B m 1 1 D TO Reside(1) Reside(2) Reside(2) Reside(3) Reside(3) Reside(4) Reside(4) <td>47.4 50.4 53.0 56.0 48.7 52.7 51.5 54.5 9.4 11 (5-1,1) 20() () 22.7 2.7 2.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8</td> <td>56.6 56.6 56.6 56.6</td> <td>measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level</td> <td>45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5</td>	47.4 50.4 53.0 56.0 48.7 52.7 51.5 54.5 9.4 11 (5-1,1) 20() () 22.7 2.7 2.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	56.6 56.6 56.6 56.6	measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5
\$\$\tag{2.5}\$ \$\tag{2.5}\$ \$\tag{3.5}\$ \$\tag{2.5}\$ \$\tag{3.5}\$ \$\tag{2.5}\$ \$\tag{3.5}\$ \$\tag{3.5}\$ \$\tag{3.5}\$ \$\tag{3.5}\$ \$\tag{4.5}\$ \$\tag{3.5}\$ \$\tag{3.5}\$ \$\tag{4.5}\$ \$\tag{3.5}\$ \$\tag{4.5}\$ \$\tag{3.5}\$ \$\tag{4.5}\$ \$\tag{3.5}\$ \$\tag{4.5}\$ \$\tag{3.5}\$ \$\tag{4.5}\$ \$\tag	47.4 50.4 53.0 56.0 48.7 52.7 51.5 54.5 9.4 11 (5-1,1) 20() () 22.7 2.7 2.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	56.6 56.6 56.6 56.6	measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5
1	47.4 50.4 53.0 56.0 48.7 52.7 51.5 54.5 9.4 11 (5-1,1) 20() () 22.7 2.7 2.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	56.5 56.5 56.5 56.5 (20.5, 8p.53/91/480p.5331p.22(measured level s'baseline level measured level s'baseline level measured level s'baseline level measured level s'baseline level	452 448 452 445 445 448 441 447 477 (2) 673 444 448 471 477 (2) 673 444 488 475 479 471 479 (1) 592 592 591 598 592 598 592 498 592 498 698 698 698 698 698 698 698 698 698 6
\$\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texitex{\$\text{\$\texit{\$\text{\$\texit{\$\texit{\$\texititt{\$\text{\$\text{\$\text{\$\texit{\$\tex{	#24 554 554 555 555 555 555 555 555 555 5	56.5 56.5 56.5 56.5 (20.5, 8p.53/91/480p.5331p.22(massured level s baseline level 53.4	45.2 44.0 45.2 44.5 44.8 44.1 44.7 54.9 55.0 55.0 55.1 55.5 52.3 48.0 55.7 47.0 47.1 47.9 47.1 47.9 45.0 55.0 55.2 55.1 55.1 55.5 52.3 48.0 55.7 47.0 46.8 46.8 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 47.0 46.8 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5
1	77.4 55.4 55.4 55.2 55.2 55.2 55.5 55.5 55	56.5 56.5 56.5 56.5 56.5 (201, 1911/04 (Marketan) 120(massured level s baseline level massured level 5 baseline level massured level 5 baseline level massured level 5 baseline level bit 4 bit 4 bit 4 bit 5 bit 4 bit 6 bit 7 bit 7 bit 7 bit 8 bit	44.2 44.8 44.5 44.8 44.1 44.7 54.0 56.0 56.0 51.5 51.5 52.3 48.0 53.7 (2) 47.3 44.4 44.8 47.5 47.9 47.1 47.9 (5) 52.2 59.2 59.1 59.8 59.2 59.8 59.4 44.9 44.6 44.5 47.0 44.8
2 2 2 2 2 2 2 2 2 2	472 50.4 50.4 50.5 5	0.5.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5	manuscular land it baseline land measured land it baseline land 53.4 53.4 53.4 54.0 55.0 55.0 55.1	44.2
1	7.4 56.4 56.5 52.5 56.6 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	10.5 56.6 56.6 56.6 56.6 (20.5)00000000000000000000000000000000000	measured found it baselines benefit measured found it baselines ferest 53.4 53.4 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5	44.2 44.8 44.5 44.8 44.1 44.7 54.0 56.0 56.0 51.5 51.5 52.3 48.0 53.7 (2) 47.3 44.4 44.8 47.5 47.9 47.1 47.9 (5) 52.2 59.2 59.1 59.8 59.2 59.8 59.4 44.9 44.6 44.5 47.0 44.8
\$\$ \$\text{m}\$ 1 \$\text{ 0 } \$\text{T}\$ \$\text{Reconstitute}\$\$ \$\$ \$0.00\$ \$\$ \$\text{Reconstitute}\$\$\$ \$\text{Reconstitute}\$\$\$ \$\text{Reconstitute}\$\$\$ \$\text{Reconstitute}\$\$\$ \$\text{Reconstitute}\$\$\$ \$\text{Reconstitute}\$\$\$ \$\text{Reconstitute}\$\$\$ \$\text{Reconstitute}\$\$\$\$ \$\text{Reconstitute}\$\$\$\$ \$\text{Reconstitute}\$\$\$\$ \$\text{Reconstitute}\$	472 50.4 50.4 50.5 5	0.5.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5	manuscular land it baseline land measured land it baseline land 53.4 53.4 53.4 54.0 55.0 55.0 55.1	44.2
\$\$ \$\text{m}\$ \$1\$ \$\text{m}\$ \$2\$ \$\text{m}\$	472 50.4 50.4 50.5 5	10.5 56.6 56.6 56.6 56.6 (20.5)00000000000000000000000000000000000	measured found it baselines benefit measured found it baselines ferest 53.4 53.4 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5	44.2
\$\$ \$\text{m}\$ \$1\$ \$\text{m}\$ \$2\$ \$\text{m}\$	27.2 55.4 56.0 55.0 56.0 55.0 56.0 56.0 56.0 56.0	10.5 56.6 56.6 56.6 56.6 (20.5)00000000000000000000000000000000000	measured found it baselines benefit measured found it baselines ferest 53.4 53.4 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5	44.2
1	7.4 55.4 56.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5	10.5 56.6 56.6 56.6 56.6 (20.5)00000000000000000000000000000000000	measured found it baselines benefit measured found it baselines ferest 53.4 53.4 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5	44.2
1	27.4 55.4 56.5	56.5 56.6 56.6 56.6 56.6 56.6 56.6 56.6	material deaf, busines level material field (Section Section S	44.2
1	7.4 55.4 55.4 55.2 55.5 55.5 55.5 55.5 55	51.5 5.6.5 5.6.6 5	measured found it baselines benefit measured found it baselines ferest 53.4 53.4 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5	44.2 44.8 44.5 44.8 44.1 44.7 45.8 45.8 45.8 45.8 45.8 45.8 45.8 45.8
1	27.2 55.4 55.9 56.0 69.2 55.7 51.5 54.5 52.1 54.5 53.1 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 55.5 55.5	\$15.5 \$16.5 \$16.5 \$16.6 \$16.6 \$16.6 \$16.6 \$16.6 \$16.6 \$16.7	Instituted found, Standard level Institute found (Standard and Ins	44.2
B	27.4 55.4	50.5 50.6 50.6 50.6 50.6 50.6 50.6 50.6	massand food of baseline tool measured from the massand food of baseline tool measured food of baseline tool massand food of baseline tool massand food of baseline tool 53.4 53.4 54.0 55.0	44.2 44.8 44.5 44.8 44.1 44.7 44.5 44.8 44.1 44.7 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.8 44.5 44.8 44.8 44.5 44.8
S	7.4 55.4 56.4 52.2 54.5 52.2 52.2 52.2 52.2 52.2 52	56.5 56.6 56.6 56.6 56.6 56.6 56.6 56.6	massand forth Statistics level 50.4 50.4 50.7	44.2
B	7.4 55.4 56.4 52.2 54.5 52.2 52.2 52.2 52.2 52.2 52	56.5 56.6 56.6 56.6 56.6 56.6 56.6 56.6	massand food 1 baseline treat measured food 1 baseline treat 53.4 53.4 53.6 53.7 53.7 53.2 50	44.2 44.8 44.5 44.8 44.1 44.7 44.5 44.8 44.1 44.7 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.5 44.8 44.8 44.5 44.8 44.8 44.5 44.8
S	17.4 55.4 50.2 50.6 40.2 50.7 50.5 50.6 40.7 50.7 50.5 50.6 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 20.0 1.83 1 (2-1.) 1.83 1 (2-1.) 20.0 1.83 1 (2-1.)	\$1.5 \$ \$5.6 \$ \$6.5 \$ \$6.6 \$ \$6	measured found the best location benefit measured found the similar development of the similar develop	44.2
1	7.4 55.4 56.4 52.2 54.5 52.2 52.2 52.2 52.2 52.2 52	\$1.5 \$ \$5.6 \$ \$6.5 \$ \$6.6 \$ \$6	measured found the best location benefit measured found the similar development of the similar develop	44.2

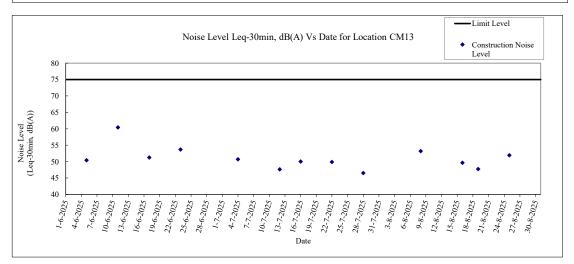




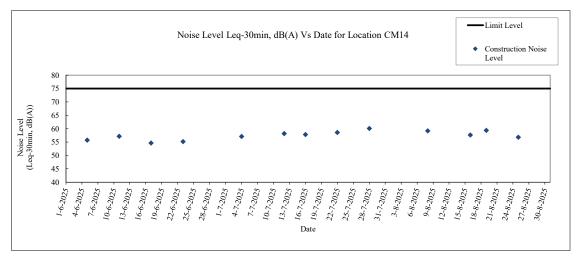


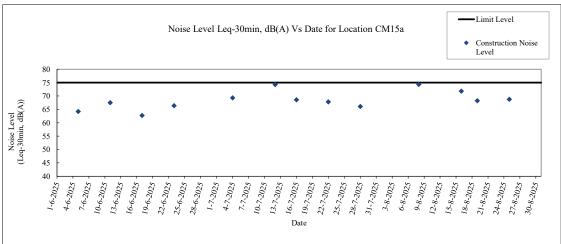


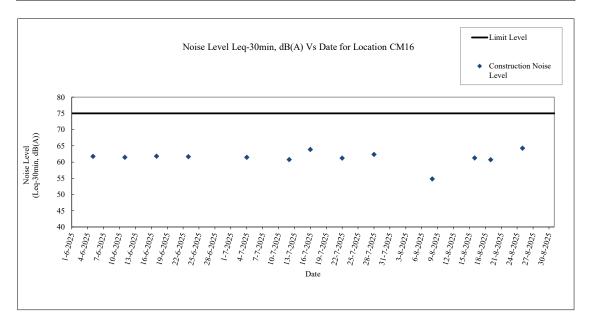


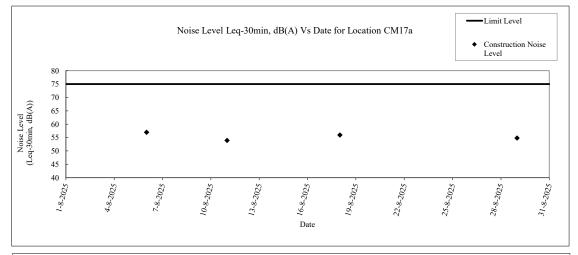

Note:

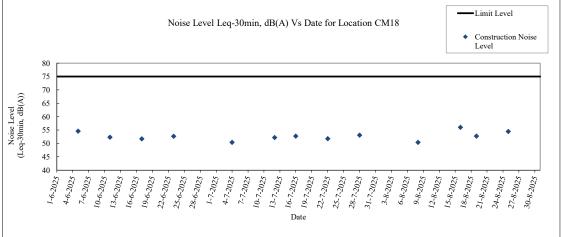
As three of the monitoring dates (11, 17 and 23 June 2025) fell within the exam period of the school, the limit level of noise monitoring of the monitoring dates were set to be 65 dB(A), while the limit level of noise monitoring of the other monitoring dates were remained as 70 dB(A).

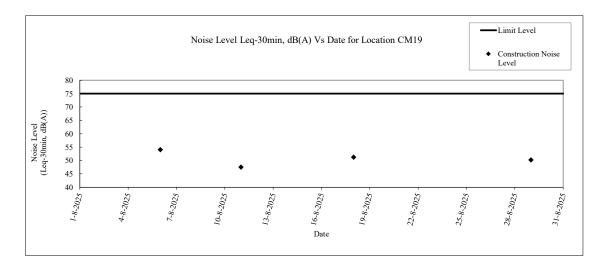


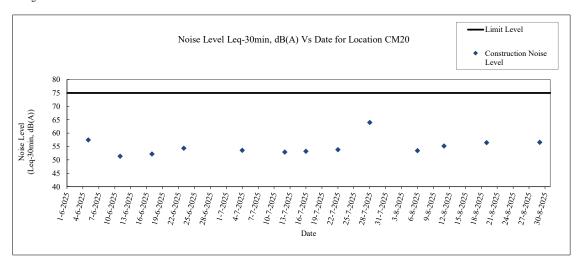












Appendix 3.3	Event and Action Plan for Noise	

Event and Action Plan for Noise

Action Level	1. 2. 3. 4.	Notify IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; and Increase monitoring frequency to check mitigation effectiveness.	 2. 3. 	Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; and Supervise the implementation of remedial measures.	1. 2. 3.	propose remedial measures for the analysed noise problem; and	1.	Submit noise mitigation proposals to IEC; and Implement noise mitigation proposals.
Limit Level	1. 2. 3. 4. 5. 6. 7.	Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring.	1. 2. 3.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; and Supervise the implementation of remedial measures.	1. 2. 3. 4. 5.	Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	4.	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Resubmit further proposal if problem still not under control; and Stop the relevant portion of works as determined by ER, until the exceedance is abated.

Appendix 4.1 Calibration Certificates of Impact Water Quality Monitoring Equipment

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE060050

Date of Issue

: 13 June 2025

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit 1608, 16/F, Tower B, Manulife Fin. Centre 223 - 231 Wai Yip Street, Kwun Tong,

Kowloon (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS Multi Parameters

Manufacturer:

YSI

Serial Number:

15M101091

Date of Received:

06 June 2025

Date of Calibration:

Date of Next Calibration:

10 June 2025 10 September 2025

Request No. :

D-BE060050

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500-H+ B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 23e 4500-O G (Membrane Electrode Method)

Turbidity

APHA 21e 2130 B (Nephelometric Method)

Conductivity

APHA 21e 2510 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance (pH unit)	Result
4.00	4.15	0.15	Satisfactory
7.42	7.41	-0.01	Satisfactory
10.01	9.96	-0.05	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance (°C)	Result	
35.5	35.4	-0.1	Satisfactory	
25.8	25.6	-0.2	Satisfactory	
14.2	14.4	0.2	Satisfactory	

Tolerance of Temperature should be less than $\pm\,2.0$ ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result	
10	10.49	4.9	Satisfactory	
20	20.93	4.65	Satisfactory	
30	30.83	2.77	Satisfactory	

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

FUNG Yuel-ciling Laboratory Manager

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email:info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE060050

Date of Issue

: 13 June 2025

Page No.

:2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance (mg/L)	Result
7.73	8.02	0.29	Satisfactory
5.24	5.51	0.27	Satisfactory
3.04	3.18	0.14	Satisfactory
0.08	0.20	0.12	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (a) (%)	Result
0	0.04	(#)	Satisfactory
10	10.09	0.9	Satisfactory
20	18.81	-6.33	Satisfactory
100	94.55	-5.45	Satisfactory
800	811.97	1.50	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading (μS/cm at 25°C)	Tolerance (%)	Result
146.9	139.5	-5.04	Satisfactory
1412	1495	5.88	Satisfactory
12890	12839	-0.40	Satisfactory
58670	58697	0.05	Satisfactory
111900	112304	0.36	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s)

- The "Date of Next Calibration" is recommended according to best practice principles followed by QPT or relevant international standards.
- The results relate only to the calibrated equipment as received.
- The performance of the equipment stated in this report is checked using independent reference material, with results compared against a
 calibrated secondary source.
- "Displayed Reading" denotes the figure shown on the item under calibration/checking, regardless of equipment precision or significant figures.
- The "Tolerance Limit" mentioned is the acceptance criteria applicable to similar equipment used by Quality Pro Test-Consult Ltd. or quoted from relevant international standards.

--- END OF REPORT ---

⁽a) For 0 NTU, Display Reading should be less than 1 NTU

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email:info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE060091

Date of Issue

: 18 June 2025

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit 1608, 16/F, Tower B, Manulife Fin. Centre 223 - 231 Wai Yip Street, Kwun Tong,

Kowloon (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS Multi Parameters

Manufacturer:

YSI

Serial Number:

22C106561

Date of Received:

12 June 2025

Date of Calibration:

Date of Next Calibration:

16 June 2025 16 September 2025

Request No.:

D-BE060091

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500-H+ B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 23e 4500-O G (Membrane Electrode Method)

Turbidity

APHA 21e 2130 B (Nephelometric Method)

Conductivity

APHA 21e 2510 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.06	0.06	Satisfactory
7.42	7.29	-0.13	Satisfactory
10.01	9.95	-0.06	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance (°C)	Result
43.2	42.0	-1.2	Satisfactory
28.3	27.4	-0.9	Satisfactory
10.3	10.6	0.3	Satisfactory

Tolerance of Temperature should be less than $\pm\,2.0$ ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.96	-0.4	Satisfactory
20	19.57	-2.15	Satisfactory
30	29.47	-1.77	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

> FUNG Yuen-ching Laboratory Manager

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE060091

Date of Issue

: 18 June 2025

Page No.

:2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance (mg/L)	Result
7.43	7.67	0.24	Satisfactory
4.28	4.49	0.21	Satisfactory
3.11	3.25	0.14	Satisfactory
0.09	0.39	0.30	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (a) (%)	Result
0	0.37	5 -	Satisfactory
10	10.48	4.8	Satisfactory
20	20.01	0.05	Satisfactory
100	102.81	2.81	Satisfactory
800	811.84	1.48	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading (μS/cm at 25°C)	Tolerance (%)	Result
146.9	157.7	7.35	Satisfactory
1412	1412	0	Satisfactory
12890	12897	0.05	Satisfactory
58670	59353	1.16	Satisfactory
111900	115441	3.16	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s): -

- The "Date of Next Calibration" is recommended according to best practice principles followed by QPT or relevant international standards.
- The results relate only to the calibrated equipment as received.
- The performance of the equipment stated in this report is checked using independent reference material, with results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on the item under calibration/checking, regardless of equipment precision or significant figures.
- The "Tolerance Limit" mentioned is the acceptance criteria applicable to similar equipment used by Quality Pro Test-Consult Ltd. or quoted from relevant international standards.

--- END OF REPORT ---

⁽a) For 0 NTU, Display Reading should be less than 1 NTU

Appendix 4.2	Impact Water	Quality Mon	itoring Data

aurecon

Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team Water Quality Monitoring Result

Water Quality	Monitoring	Location - L12	

Water Quality Monito	ring Locatio	11.02														
			Water	depth	Temper	ature (°C)	F	Н	DO (mg/L)	DC	(%)	Turbidit	ty (NTU)	Suspended S	olids (mg/L
Date	Start Time	Weather		n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
01 August 2025	09:10	Fine	Middle	0.10	28.2 28.2	28.2	7.9 7.9	7.9	7.9 7.9	7.9	101.5 101.5	101.5	6.2 6.2	6.2	<1.0	<1.0
07 August 2025	11:02	Cloudy	Middle	0.10	31.9 31.9	31.9	7.3 7.3	7.3	7.8 7.8	7.8	106.7	106.9	5.5	5.5	<1.0	<1.0
09 August 2025	13:00	Sunny	Middle	0.08	32.1 32.1	32.1	7.3 7.3	7.3	8.2 8.2	8.2	112.7	112.9	3.2 3.2	3.2	2.0	1.6
11 August 2025	12:00	Sunny	Middle	0.11	31.7 31.7	31.7	7.2 7.2	7.2	8.0 8.0	8.0	109.0 109.0	109.0	3.6 3.7	3.7	1.6	1.7
13 August 2025	08:36	Cloudy	Middle	0.10	27.1 27.1	27.1	7.8 7.8	7.8	8.1 8.1	8.1	101.6 101.7	101.7	4.7 4.7	4.7	<1.0 <1.0	<1.0
16 August 2025	09:08	Cloudy	Middle	0.10	28.8 28.8	28.8	7.5 7.5	7.5	6.4	6.4	83.4 83.5	83.5	5.0 4.9	4.9	1.7	2.0
18 August 2025	09:02	Cloudy	Middle	0.09	28.4 28.4	28.4	7.5 7.5	7.5	6.4	6.4	82.5 82.5	82.5	3.0	3.0	<1.0	<1.0
20 August 2025	09:30	Fine	Middle	0.10	28.4 28.4	28.4	7.7	7.7	6.7	6.7	85.8 85.8	85.8	6.2 6.2	6.2	4.9	4.6
23 August 2025	09:30	Sunny	Middle	0.10	28.4 28.4	28.4	7.7	7.7	6.7	6.7	85.8 85.8	85.8	6.2 6.2	6.2	4.9 4.2	4.6
25 August 2025	15:00	Sunny	Middle	0.10	29.2 29.3	29.3	7.2 7.3	7.2	6.7	6.7	87.3 86.8	87.1	5.0	5.0	1.9	1.5
27 August 2025	12:14	Cloudy	Middle	0.10	29.3 29.3	29.3	7.3 7.3	7.3	5.9 5.9	5.9	76.8 76.7	76.8	1.8	1.8	8.1 7.4	7.8
29 August 2025	17:00	Rainy	Middle	0.10	27.2 27.2	27.2	7.2	7.2	7.2 7.2	7.2	91.9	91.9	4.4	4.3	<1.0	<1.0

Date	Start Time	Weather	Water	depth	Tempera	iture (°C)	F	Н	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	Suspended S	olids (mg/l
Danc	Dillit Tille	W Cannot	(1	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Averag
07 August 2025	08:33	Cloudy	Middle	0.07	28.0 28.0	28.0	7.3 7.3	7.3	7.1	7.1	90.2 90.2	90.2	3.9	3.8	1.0	1.1
09 August 2025	12:01	Sunny	Middle	0.07	25.8 25.6	25.7	7.0	7.0	7.6	7.6	93.4	93.0	5.3	5.2	<1.0	<1.0
11 August 2025	10:32	Sunny	Middle	0.07	28.2 28.2	28.2	7.4	7.4	6.3	6.3	81.0 81.0	81.0	1.5	1.5	3.7	3.3
13 August 2025	10:36	Cloudy	Middle	0.11	27.1	27.1	7.8	7.8	8.1 8.1	8.1	101.8	101.9	4.7	4.7	2.0	2.0
16 August 2025	17:30	Cloudy	Middle	0.08	25.2 25.1	25.2	7.4	7.4	7.3	7.3	88.0 88.0	88.0	4.8	4.9	<1.0	<1.0
18 August 2025	18:03	Cloudy	Middle	0.07	25.2 25.2	25.2	7.3	7.3	6.5	6.5	78.4 78.4	78.4	7.7	7.7	<1.0	<1.0
20 August 2025	17:36	Fine	Middle	0.08	29.1	29.1	7.4	7.4	7.1	7.1	92.5 92.3	92.4	3.4	3.4	<1.0	<1.0
23 August 2025	18:31	Sunny	Middle	0.05	27.9 27.9	27.9	7.3 7.2	7.2	6.9	6.9	88.1 88.1	88.1	3.6 3.6	3.6	6.2	5.3
25 August 2025	14:02	Sunny	Middle	0.07	27.7	27.7	7.4	7.4	6.3	6.3	79.6 79.5	79.6	3.3	3.3	1.4	1.6
27 August 2025	13:23	Cloudy	Middle	0.07	24.7	24.7	7.1	7.1	6.1	6.1	73.2	73.1	2.0	2.0	1.3	1.2
29 August 2025	13:41	Rainy	Middle	0.07	23.1	23.1	7.6	7.6	7.9	7.9	92.6 92.8	92.7	4.9	4.9	<1.0	<1.0

Water Quality Monito	ring Locatio	n: U4a														
_			Water	Water depth		Temperature (°C)		pH		DO (mg/L)		(%)	Turbidity (NTU)		Suspended Solids (mg/L	
Date	Start Time	Weather	(m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
07 August 2025	08:01	Cloudy	Middle	0.08	28.7	28.7	7.5	7.5	7.0	7.0	90.9	90.9	4.9	4.9	2.1	2.5
				0.08	28.7		7.5		7.0		90.9		4.9		2.8	
09 August 2025	08:47	Sunny	Middle	0.05	29.7	29.7	7.6	7.6	8.1	8.1	106.6	106.6	4.2	4.2	<1.0	<1.0
0) Hugun 2023	00.47	Junny	window	0.00	29.7	27.7	7.6	7.0	8.1	0.1	106.6	100.0	4.2	4.2	<1.0	-1.0
11 August 2025	10:30	Sunny	Middle	0.08	28.7	28.7	7.6	7.6	6.3	6.3	81.3	81.3	2.8	2.8	2.5	2.6
11 August 2020	10.50	Junny	.vuu.c	0.00	28.7	20.7	7.6	7.0	6.3	0.5	81.3	01.5	2.8	2.0	2.6	2.0

	11 August 2025	10:30	Sunny	Middle	0.08	28.7	28.7	7.6	7.6	6.3	6.3	81.3 81.3	81.3	2.8 2.8	2.8	2.5 2.6	2.6
Ì	13 August 2025	12:36	Cloudy	Middle	0.21	27.1	27.1	7.8	7.8	8.1	8.1	102.0	102.1	4.6	4.6	3.0	3.0
Ì	16 August 2025	17:00	Cloudy	Middle	0.05	24.5	24.5	7.6	7.6	7.1	7.1	85.4 85.7	85.6	10.0	10.0	1.4	1.6
İ	18 August 2025	17:29	Cloudy	Middle	0.06	24.5	24.5	7.6	7.6	6.4	6.4	77.0 77.1	77.1	6.4	6.3	<1.0	<1.0
Ì	20 August 2025	17:00	Fine	Middle	0.08	29.2	29.2	7.6	7.6	6.9	6.9	89.9 90.0	90.0	5.9	5.9	3.1 5.2	4.2
Ì	23 August 2025	18:00	Sunny	Middle	0.06	28.1	28.1	7.3	7.3	6.7	6.7	85.5 85.4	85.5	1.2	1.2	3.8	3.7
İ	25 August 2025	13:31	Sunny	Middle	0.08	27.9	27.9	7.5	7.5	6.2	6.2	79.3 78.4	78.9	1.9	1.9	<1.0	<1.0
İ	27 August 2025	13:00	Cloudy	Middle	0.06	24.9	24.9	7.0	7.0	6.0	6.0	72.7	72.6	1.5	1.5	<1.0	<1.0
İ	29 August 2025	13:00	Rainy	Middle	0.08	24.8	24.8	7.4	7.4	6.5	6.5	78.0 78.1	78.1	2.5	2.5	<1.0	<1.0

Date	Start Time	Weather	Water	depth	Tempera	ature (°C)	F	H	DO (mg/L)	DC	(%)	Turbidi	ty (NTU)	Suspended S	olids (mg/l
Date	Start Time	weather	(1	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Averag
01 August 2025	17:00	Fine	Middle	0.03	31.1	31.1	8.4 8.4	8.4	6.3	6.3	85.5 85.6	85.6	1.7	1.7	2.0	2.2
07 August 2025	07:01	Cloudy	Middle	0.03	28.5 28.5	28.5	10.0	10.0	7.0	7.0	90.4	90.4	8.0 7.9	8.0	11.0	12.5
09 August 2025	17:09	Sunny	Middle	0.05	27.6 27.6	27.6	8.4	8.4	7.0	7.0	89.7 89.4	89.6	6.8	6.8	10.0	11.0
11 August 2025	09:30	Sunny	Middle	0.03	28.5	28.5	9.9	9.9	6.2	6.2	80.4 80.5	80.5	5.3	5.3	43.0 44.0	43.5
13 August 2025	16:30	Cloudy	Middle	0.03	26.1 26.1	26.1	9.1	9.1	7.2 7.2	7.2	89.1 88.9	89.0	9.3 9.2	9.3	<1.0	<1.0
16 August 2025	18:00	Cloudy	Middle	0.03	23.8	23.8	9.4 9.4	9.4	7.4	7.3	87.0 86.9	87.0	10.8 10.7	10.7	<1.0	<1.0
18 August 2025	18:31	Cloudy	Middle	0.03	23.9	23.9	9.3 9.4	9.3	6.5	6.5	77.2	77.2	8.2 8.0	8.1	<1.0 <1.0	<1.0
20 August 2025	16:32	Fine	Middle	0.03	29.4	29.4	8.9 8.9	8.9	6.4	6.4	84.1 83.4	83.8	7.6 7.6	7.6	9.7	9.6
23 August 2025	17:01	Sunny	Middle	0.03	28.0 28.0	28.0	8.3 8.3	8.3	6.9	6.9	87.7 87.5	87.6	4.6	4.5	3.0 5.4	4.2
25 August 2025	12:38	Sunny	Middle	0.03	27.7 27.7	27.7	8.1 8.1	8.1	6.2 6.2	6.2	78.8 78.8	78.8	5.6 5.7	5.7	6.3 10.0	8.2
27 August 2025	11:48	Cloudy	Middle	0.03	24.0	24.0	8.5 8.5	8.5	6.8	6.8	83.0 82.6	82.8	8.2 8.1	8.1	3.2	3.2
29 August 2025	12:04	Rainy	Middle	0.03	23.8	23.8	8.7 8.7	8.7	7.5	7.5	91.1	91.1	9.2	9.3	17.0	19.0

Water Quality Monito	ring Locatio	n : U6a			Tempera	ature (°C)		Н	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	Suspended Solids (mg/L)	
Date	Start Time	Weather	Water (1		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
01 August 2025	17:31	Fine	Middle	0.05	29.6 29.6	29.6	7.6 7.6	7.6	6.1	6.1	79.9 79.9	79.9	12.7 12.5	12.6	<1.0	<1.0
07 August 2025	18:01	Cloudy	Middle	0.05	28.6 28.6	28.6	7.3 7.3	7.3	7.2 7.2	7.2	92.6 92.5	92.6	6.1 6.1	6.1	<1.0	<1.0
09 August 2025	17:45	Sunny	Middle	0.05	27.9 27.9	27.9	7.2 7.2	7.2	6.3	6.3	80.6 81.2	80.9	5.4 5.5	5.4	5.0 4.9	5.0
11 August 2025	18:30	Sunny	Middle	0.04	28.6 28.6	28.6	7.4	7.4	6.4	6.4	82.8 82.8	82.8	4.0 4.0	4.0	3.3 4.5	3.9
13 August 2025	15:00	Cloudy	Middle	0.05	27.1 27.1	27.1	7.8 7.8	7.8	8.1 8.1	8.1	101.1 101.1	101.1	4.4 4.4	4.4	<1.0	<1.0
16 August 2025	16:00	Cloudy	Middle	0.05	24.9 24.9	24.9	7.5 7.5	7.5	6.7	6.7	80.5 80.4	80.5	1.0	1.0	4.8 5.1	5.0
18 August 2025	16:33	Cloudy	Middle	0.05	24.2 24.2	24.2	7.6 7.6	7.6	6.6	6.5	78.7 77.4	78.1	3.2 3.1	3.1	<1.0 <1.0	<1.0
20 August 2025	16:01	Fine	Middle	0.06	29.6 29.6	29.6	8.0 8.0	8.0	6.4	6.4	83.9 83.2	83.6	3.2 3.2	3.2	<1.0 <1.0	<1.0
23 August 2025	16:35	Sunny	Middle	0.05	28.5 28.5	28.5	7.4	7.4	7.1 7.1	7.1	91.5 91.2	91.4	7.5 7.5	7.5	1.7	1.6
25 August 2025	12:02	Sunny	Middle	0.05	28.3 28.3	28.3	7.4	7.4	6.1 6.1	6.1	77.7 78.3	78.0	6.5	6.5	9.6 7.5	8.6
27 August 2025	11:09	Cloudy	Middle	0.05	24.3 24.3	24.3	7.1 7.1	7.1	6.5 6.5	6.5	77.8 77.8	77.8	6.2	6.2	1.7 3.1	2.4
29 August 2025	11:30	Rainy	Middle	0.05	23.8	23.8	7.5	7.5	7.6	7.6	89.4 89.3	89.4	7.7	7.8	1.4	1.6

Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team Water Quality Monitoring Result

Water Quality Monito	ring Locatio	n: 181														
Date	Start Time	Weather	Water			ature (°C)		Н		mg/L)		(%)		ty (NTU)	Suspended S	olids (mg/L
			(r	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
01 August 2025	15:50	Fine	Middle	0.03	28.5	28.5	7.5	7.5	6.2	6.2	80.5	80.5	6.5	6.5	<1.0	<1.0
_					28.5		7.5		6.2		80.5		6.6		<1.0	
07 August 2025	16:14	Cloudy	Middle	0.02	29.4	29.4	8.6	8.6	7.0	7.0	91.8	91.8	4.5	4.5	2.5	3.7
	_				29.4 28.7		8.6 7.2		7.0 5.1		91.8 65.6		4.5 7.8		4.8 19.0	_
09 August 2025	15:29	Sunny	Middle	0.03	28.7	28.7	7.2	7.2	5.1	5.1	66.5	66.1	7.8	7.8	27.0	23.0
	-				29.4		8.5		6.3		82.2		3.7		16.0	-
11 August 2025	16:57	Sunny	Middle	0.02	29.4	29.4	8.5	8.5	6.3	6.3	82.2	82.2	3.6	3.6	28.0	22.0
13 August 2025	16:05	Cloudy	Middle	0.02	26.1	26.1	7.5	7.5	7.5	7.5	92.9	92.9	7.3	7.3	<1.0	<1.0
13 August 2025	16:05	Cioudy	Middle	0.02	26.1	20.1	7.5	7.5	7.5	1.3	92.8	92.9	7.3	7.3	<1.0	<1.0
16 August 2025	14:01	Cloudy	Middle	0.03	23.5	23.5	7.5	7.5	6.8	6.8	80.4	80.0	5.8	5.8	<1.0	1.5
10 August 2025	14.01	Cabady	Hilduic	0.03	23.5	20.0	7.5	7.3	6.8	0.0	79.5	00.0	5.8	5.0	1.9	1
18 August 2025	14:33	Cloudy	Middle	0.03	23.0	23.2	7.6	7.6	6.6	6.5	76.4	75.8	5.8	5.8	4.9	5.0
					23.3		7.6		6.4		75.1		5.9		5.1	
20 August 2025	13:39	Fine	Middle	0.02	29.4	29.4	8.6 8.6	8.6	6.5	6.5	84.8 84.4	84.6	5.8	5.8	1.6	1.7
					29.4		7.4		6.1		78.4		4.6		5.4	-
23 August 2025	14:14	Sunny	Middle	0.03	28.7	28.7	7.4	7.4	6.0	6.0	77.9	78.2	4.6	4.6	4.5	5.0
		_			28.5		7.5		5.9		76.1		5.3		1.6	
25 August 2025	10:02	Sunny	Middle	0.03	28.5	28.5	7.5	7.5	5.8	5.9	75.1	75.6	5.4	5.4	1.9	1.8
27 August 2025	09:04	Cloudy	Middle	0.03	26.1	26.1	7.2	7.2	6.6	6.6	81.5	81.4	3.4	3.4	2.0	1.7
27 August 2025	09:04	Cioudy	wiiddie	0.03	26.1	20.1	7.2	7.2	6.6	0.0	81.2	61.4	3.4	3.4	1.4	1.7
29 August 2025	09:16	Rainy	Middle	0.03	25.8	25.8	7.5	7.5	7.5	7.5	92.1	91.8	4.0	3.9	<1.0	<1.0
				2.03	25.8	_5.0	7.5		7.4		91.4	- 1.0	3.9		<1.0	1.0

Water Quality Monitoring Location : TS2a

Date	Start Time	Weather	Water	depth	Tempera	iture (°C)	F	H	DO (mg/L)	DC	(%)	Turbidi	ty (NTU)	Suspended S	iolids (mg/I
			(1	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Averag
01 August 2025	15:30	Fine	Middle	0.05	29.2	29.2	7.6	7.6	6.0	6.0	78.5 78.5	78.5	7.6	7.5	<1.0	<1.0
07 August 2025	16:48	Cloudy	Middle	0.05	29.5 29.5	29.5	7.4	7.4	6.4	6.4	83.7 83.7	83.7	4.1	4.1	1.9	1.6
09 August 2025	18:21	Sunny	Middle	0.05	27.8 27.8	27.8	7.1	7.1	6.3	6.2	79.7 78.6	79.2	4.4	4.4	<1.0	<1.0
11 August 2025	17:24	Sunny	Middle	0.05	29.5 29.5	29.5	7.4	7.4	5.8 5.8	5.8	76.0 76.0	76.0	2.3	2.3	<1.0 1.1	1.0
13 August 2025	14:05	Cloudy	Middle	0.05	26.9 26.9	26.9	7.6 7.6	7.6	7.4	7.3	92.1 91.6	91.9	8.2 8.2	8.2	<1.0 <1.0	<1.0
16 August 2025	14:32	Cloudy	Middle	0.05	23.2	23.2	7.5 7.5	7.5	6.7	6.7	78.9 78.8	78.9	10.0	10.0	1.3	1.3
18 August 2025	15:01	Cloudy	Middle	0.05	22.9 22.9	22.9	7.7	7.7	6.6	6.5	76.5 75.8	76.2	17.4 17.3	17.3	1.5 <1.0	1.3
20 August 2025	14:10	Fine	Middle	0.05	29.9 29.9	29.9	8.1 8.1	8.1	5.3 5.2	5.3	69.9 69.3	69.6	6.6	6.6	4.2 5.6	4.9
23 August 2025	14:45	Sunny	Middle	0.05	28.6 28.6	28.6	7.3 7.3	7.3	5.9 5.8	5.8	75.9 75.1	75.5	1.2	1.2	1.2	1.1
25 August 2025	10:38	Sunny	Middle	0.05	28.2 28.2	28.2	7.2 7.2	7.2	5.2 5.2	5.2	67.1 66.8	67.0	1.3	1.3	2.4	2.9
27 August 2025	09:36	Cloudy	Middle	0.05	25.8 25.8	25.8	7.1 7.1	7.1	6.5	6.5	80.0 79.9	80.0	4.4	4.4	<1.0 1.6	1.3
29 August 2025	09:34	Rainy	Middle	0.05	25.5 25.5	25.5	7.4	7.4	7.5	7.5	91.2 91.9	91.6	5.2 5.2	5.2	<1.0 1.0	<1.0

Water Quality Monitoring Location : TSR1a

Date	Start Time	Weather	Water	depth	Tempera	ture (°C)	F	Н	DO	mg/L)	DC	(%)	Turbidi	ty (NTU)	Suspended S	olids (mg/L)
			(1	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
01 August 2025	16:00	Fine	Middle	0.75	28.5	28.5	7.7	7.7	6.0	6.0	77.7	77.7	7.5 7.3	7.4	<1.0	<1.0
07 August 2025	17:22	Cloudy	Middle	0.65	28.4 28.4	28.4	7.2	7.2	6.8	6.8	87.4 87.4	87.4	4.1	4.1	2.6	2.1
09 August 2025	16:02	Sunny	Middle	0.65	28.5 28.5	28.5	7.3	7.3	5.6 5.6	5.6	72.3 72.3	72.3	2.8 2.8	2.8	4.2	5.5
11 August 2025	18:01	Sunny	Middle	0.65	28.3	28.3	7.2	7.2	6.1	6.1	78.6 78.6	78.6	2.2	2.1	<1.0	<1.0
13 August 2025	14:39	Cloudy	Middle	0.60	26.8 26.8	26.8	7.6	7.6	7.4	7.4	93.0 93.0	93.0	14.0	14.1	<1.0	<1.0
16 August 2025	15:00	Cloudy	Middle	0.70	23.1	23.1	8.4 8.4	8.4	7.2 7.2	7.2	84.2 84.0	84.1	11.5	11.5	2.0 3.6	2.8
18 August 2025	15:34	Cloudy	Middle	0.65	22.8 22.8	22.8	8.0 8.0	8.0	6.7	6.6	77.3 77.0	77.2	9.9 9.7	9.8	<1.0 <1.0	<1.0
20 August 2025	14:40	Fine	Middle	0.65	29.5 29.5	29.5	8.0 8.0	8.0	5.5 5.5	5.5	72.7 72.2	72.5	6.0	6.0	1.0	1.3
23 August 2025	15:25	Sunny	Middle	0.75	28.4 28.4	28.4	7.3 7.3	7.3	5.9 5.9	5.9	76.2 76.2	76.2	3.1	3.1	6.3 7.8	1.4
25 August 2025	11:02	Sunny	Middle	0.65	28.2 28.2	28.2	8.0 7.9	7.9	5.4 5.4	5.4	69.3 69.0	69.2	4.4	4.4	1.9	2.2
27 August 2025	10:00	Cloudy	Middle	0.75	24.9 24.9	24.9	7.2 7.1	7.2	6.6 6.6	6.6	80.0 79.8	79.9	8.2 8.2	8.2	2.3	2.2
29 August 2025	10:15	Rainy	Middle	0.70	24.8 24.8	24.8	7.5	7.5	7.6 7.6	7.6	91.4 90.4	90.9	9.8 9.8	9.8	<1.0 <1.0	<1.0

Water Quality Monitoring Location : STa

Date	Start Time	Weather	Water	depth	Tempera	ture (°C)	P	Н	DO ((mg/L)	DC	(%)	Turbidi	ty (NTU)	Suspended S	olids (mg/L)
Date	Dillit Tille	W Cannot	(1	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
07 August 2025	07:32	Cloudy	Middle	0.05	28.4	28.4	7.4	7.4	6.8	6.8	87.0	87.0	4.0	4.0	4.5	3.6
	0.102				28.4		7.4		6.8		87.0	0.110	4.1		2.7	0.00
09 August 2025	11:56	Sunny	Middle	0.05	32.0	32.0	7.6	7.6	7.4	7.4	101.2	101.2	8.0	8.0	<1.0	<1.0
					32.0		7.6		7.4		101.2		8.0		<1.0	
11 August 2025	10:00	Sunny	Middle	0.05	28.4	28.4	7.8	7.7	6.1	6.1	78.5	78.5	1.9	1.9	1.3	1.2
	10100				28.4		7.7		6.1		78.4		1.9		<1.0	
13 August 2025	16:39	Cloudy	Middle	0.16	27.1	27.2	7.7	7.7	7.4	7.4	93.5	93.7	16.2	17.2	<1.0	<1.0
					27.2		7.7		7.4		93.9		18.2		<1.0	
16 August 2025	16:33	Cloudy	Middle	0.06	24.5	24.5	7.4	7.4	5.4	5.4	64.6	64.5	5.6	5.6	1.4	1.5
					24.5		7.4		5.4		64.4		5.6		1.5	
18 August 2025	17:01	Cloudy	Middle	0.07	24.4	24.4	7.4	7.4	4.8	4.8	58.0 57.9	58.0	2.9	2.9	<1.0	<1.0
					24.4		7.4		7.1		92.2		2.9		<1.0	
20 August 2025	18:00	Fine	Middle	0.06	29.0	29.0	7.5	7.5	7.1	7.1	92.2	92.2	3.7	3.7	<1.0	<1.0
					28.4		7.3		6.8		92.2 87.0		1.2		11.0	
23 August 2025	17:31	Sunny	Middle	0.07	28.4	28.4	7.3	7.3	6.6	6.7	85.5	86.3	1.2	1.2	18.0	14.5
					28.2		7.6		6.1		78.2		1.2		1.6	
25 August 2025	13:02	Sunny	Middle	0.07	28.2	28.2	7.6	7.6	6.1	6.1	77.8	78.0	1.2	1.2	<1.0	1.3
22.4 . 2026	12:32	Cloudy	Middle	0.07	25.3	25.3	7.1	7.1	6.0	5.9	72.4	72.3	5.2	5.2	4.6	4.2
27 August 2025	12:32	Cioudy	Middle	0.07	25.3	25.3	7.1	7.1	5.9	5.9	72.2	12.3	5.1	5.2	3.8	4.2
29 August 2025	12:37	Rainv	Middle	0.09	24.5	24.5	7.3	7.3	6.9	6.9	82.8	82.6	1.9	1.9	<1.0	1.2
29 August 2023	12.37	Kamy	Middle	0.09	24.5	24.3	7.3	7-3	6.9	0.9	82.4	02.0	1.9	1.9	1.1	1.2

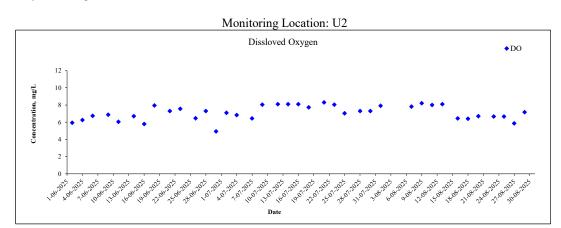
Water Quality Monitoring Location : HT

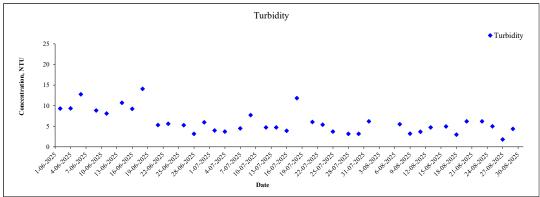
Date	Start Time	Weather	Water	depth	Tempera	ture (°C)	F	Н	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	Suspended S	olids (mg/L)
Danc	Diant Time	** Canada	(:	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
01 August 2025	11:13	Fine	Middle	0.05	28.5	28.5	8.0 8.0	8.0	7.4	7.4	95.4 95.4	95.4	0.8	0.8	<1.0	1.3
07 August 2025	12:23	Cloudy	Middle	0.05	30.0 30.0	30.0	7.7	7.7	7.1	7.1	93.6 93.6	93.6	3.6	3.6	<1.0	<1.0
09 August 2025	13:30	Sunny	Middle	0.05	31.6 31.5	31.6	7.7	7.7	6.9	6.9	93.9	93.8	3.6	3.6	<1.0	<1.0
11 August 2025	13:36	Sunny	Middle	0.05	30.5 30.5	30.5	7.8	7.8	7.0 7.0	7.0	93.4 93.2	93.3	2.5	2.4	<1.0	<1.0
13 August 2025	09:36	Cloudy	Middle	0.05	27.3 27.3	27.3	7.9 7.9	7.9	8.4 8.4	8.4	105.3 105.3	105.3	2.6 2.7	2.7	3.6 4.0	3.8
16 August 2025	10:20	Cloudy	Middle	0.05	28.9 28.9	28.9	7.5 7.5	7.5	6.4	6.4	83.2 83.2	83.2	2.2	2.2	<1.0 <1.0	<1.0
18 August 2025	11:00	Cloudy	Middle	0.05	27.8 27.8	27.8	7.1 7.1	7.1	5.9 5.9	5.9	75.3 75.3	75.3	4.3 4.3	4.3	<1.0 <1.0	<1.0
20 August 2025	10:40	Fine	Middle	0.05	29.7 29.7	29.7	7.6 7.6	7.6	6.8	6.8	89.1 89.2	89.2	2.3 2.3	2.3	1.5	<1.0
23 August 2025	10:40	Sunny	Middle	0.05	29.7 29.7	29.7	7.6	7.6	6.8	6.8	89.1 89.2	89.2	2.3 2.3	2.3	1.5	1.7
25 August 2025	16:00	Sunny	Middle	0.05	29.3 29.3	29.3	7.0 7.0	7.0	5.9 5.9	5.9	77.2 77.1	77.2	4.7	4.7	<1.0 1.3	1.2
27 August 2025	14:33	Cloudy	Middle	0.05	29.3 29.3	29.3	6.9	6.9	5.3 5.3	5.3	69.6 69.5	69.6	2.3	2.2	7.1 7.1	7.1
29 August 2025	14:43	Rainy	Middle	0.05	28.5 28.5	28.5	7.5	7.5	5.7	5.7	74.1 73.9	74.0	8.9 8.7	8.8	1.4	1.5

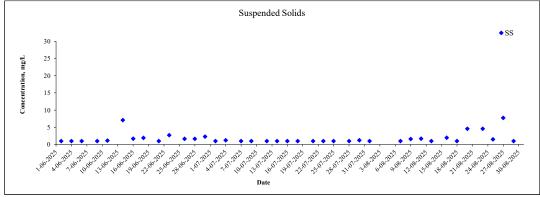
Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team Water Quality Monitoring Result

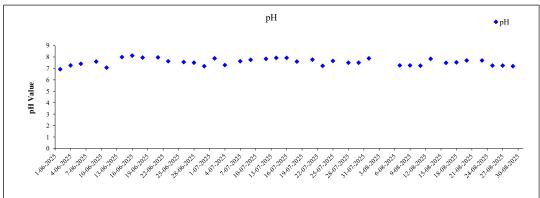
aurecon

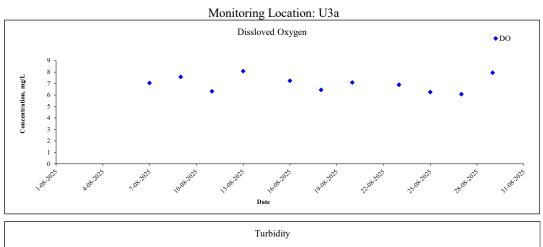
Date	Start Time	Weather	Water			ature (°C)		Н		mg/L)		(%)		ty (NTU)	Suspended S	
			(1	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Averag
01 August 2025	16:33	Fine	Middle	0.70	27.4	27.4	7.7	7.7	6.3	6.3	54.0 54.1	54.1	5.2 5.2	5.2	<1.0	<1.0
07 August 2025	18:37	Cloudy	Middle	0.75	28.6 28.6	28.6	7.4	7.4	6.8	6.8	87.3 87.2	87.3	3.3	3.3	2.5	2.0
09 August 2025	16:29	Sunny	Middle	0.75	28.4	28.4	7.6	7.6	6.5	6.5	83.4	83.6	3.8	3.8	2.6	3.1
11 August 2025	09:00	Sunny	Middle	0.70	28.5 28.5	28.5	7.3 7.3	7.3	6.1	6.1	78.5 78.5	78.5	3.0	3.1	2.0	2.1
13 August 2025	15:36	Cloudy	Middle	0.70	26.8 26.8	26.8	7.7	7.7	8.0 8.0	8.0	99.7 99.6	99.7	6.0	6.0	<1.0 <1.0	<1.0
16 August 2025	15:32	Cloudy	Middle	0.80	23.9	23.9	7.5 7.5	7.5	7.6	7.6	90.6	90.6	2.8	2.8	2.4	2.7
18 August 2025	16:01	Cloudy	Middle	0.75	23.5	23.5	8.0 8.0	8.0	7.0	6.9	81.7	81.6	3.2	3.1	<1.0	<1.0
20 August 2025	15:21	Fine	Middle	0.60	29.7	29.7	7.8	7.7	5.6	5.6	73.9 73.8	73.9	5.4	5.4	1.3	1.4
23 August 2025	16:01	Sunny	Middle	0.65	27.8 27.8	27.8	7.4	7.3	6.1	6.1	77.9 77.7	77.8	3.9	3.9	2.5	2.8
25 August 2025	11:36	Sunny	Middle	0.60	27.6 27.6	27.6	7.4	7.4	5.7 5.7	5.7	72.1 71.9	72.0	4.7 4.6	4.7	2.4	2.4
27 August 2025	10:32	Cloudy	Middle	0.65	24.6 24.7	24.7	7.0 7.0	7.0	6.9	6.9	82.9 82.3	82.6	6.2 6.2	6.2	1.4	1.8
29 August 2025	10:47	Rainy	Middle	0.70	24.7	24.7	7.3	7.3	7.4	7.4	89.6 89.4	89.5	7.0	6.9	17.0	18.5

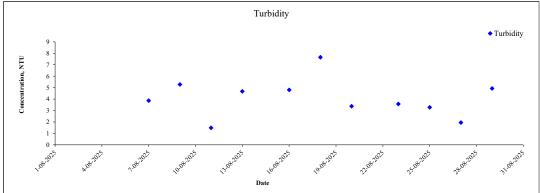

Water Quality Monito			Water		T	iture (°C)		Н	DO.	mg/L)	DO.	(%)	Tualida	ty (NTU)	Suspended S	-lide (mod)
Date	Start Time	Weather	water (1		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
01 August 2025	07:26	Fine	Middle	0.65	26.1	26.1	7.1 7.1	7.1	6.6	6.6	81.5 81.5	81.5	7.5	7.5	1.0	<1.0
07 August 2025	15:40	Cloudy	Middle	0.65	29.7	29.7	7.9	7.9	6.6	6.6	87.4 87.4	87.4	2.9	2.9	3.5	2.7
09 August 2025	14:57	Sunny	Middle	0.75	29.2	29.2	7.5	7.5	6.6	6.6	85.7 85.8	85.8	2.3	2.2	<1.0	<1.0
11 August 2025	16:21	Sunny	Middle	0.70	29.8	29.8	7.7	7.7	6.0	6.0	78.7 78.7	78.7	1.0	1.1	<1.0	<1.0
13 August 2025	13:32	Cloudy	Middle	0.80	27.0	27.0	7.8	7.8	8.2 8.2	8.2	102.8	102.9	3.0	3.0	<1.0	<1.0
16 August 2025	13:04	Cloudy	Middle	0.75	26.5 26.5	26.5	7.5	7.5	5.6 5.6	5.6	69.3 69.3	69.3	8.0	8.0	<1.0	<1.0
18 August 2025	14:01	Cloudy	Middle	0.70	23.3 23.3	23.3	7.8 7.8	7.8	6.9	6.9	80.6 80.2	80.4	10.7	10.7	<1.0 <1.0	<1.0
20 August 2025	13:00	Fine	Middle	0.70	29.7 29.7	29.7	7.6 7.6	7.6	6.2	6.2	82.2 81.8	82.0	2.1	2.1	1.1	1.1
23 August 2025	13:00	Sunny	Middle	0.70	29.7 29.7	29.7	7.4	7.4	7.1 7.1	7.1	93.8 93.8	93.8	6.5	6.5	1.1	1.1
25 August 2025	09:03	Sunny	Middle	0.65	29.2 29.2	29.2	7.2 7.2	7.2	6.2	6.2	81.2 81.0	81.1	3.3 3.4	3.4	1.4	1.5
27 August 2025	08:03	Cloudy	Middle	0.75	26.4 26.5	26.5	6.8	6.8	6.5 6.5	6.5	80.5 80.4	80.5	3.2	3.1	2.0 1.7	1.9
29 August 2025	08:13	Rainy	Middle	0.65	26.5 26.5	26.5	7.3 7.3	7.3	7.4 7.3	7.4	91.9 91.0	91.5	3.4	3.4	<1.0	<1.0

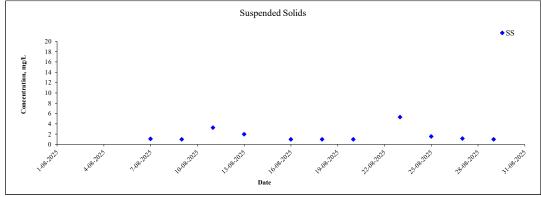

Date	Start Time	Weather	Water	depth	Tempera	ature (°C)	F	Н	DO (mg/L)	DO	(%)	Turbidit	ty (NTU)	Suspended S	olids (mg)
Date	Start Time	weather	(:	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Avera
01 August 2025	14:00	Fine	Middle	0.05	26.5	26.5	6.9 7.0	7.0	6.6	6.5	81.5 81.5	81.5	8.5 8.4	8.5	<1.0	<1.0
07 August 2025	12:31	Cloudy	Middle	0.05	26.6	26.6	7.4	7.4	5.9 5.9	5.9	73.4 73.5	73.5	1.1	1.1	<1.0	<1.0
09 August 2025	14:23	Sunny	Middle	0.05	29.0 29.0	29.0	7.5	7.5	6.9	6.9	89.6 89.5	89.6	7.5	7.5	<1.0	<1.0
11 August 2025	15:55	Sunny	Middle	0.05	29.7	29.7	7.1	7.1	5.7	5.7	74.9 74.8	74.9	1.3	1.3	<1.0	<1.0
13 August 2025	13:00	Cloudy	Middle	0.05	26.9 26.9	26.9	7.8 7.8	7.8	8.1 8.1	8.1	101.5	101.4	4.7	4.7	<1.0 <1.0	<1.0
16 August 2025	12:31	Cloudy	Middle	0.05	26.6 26.6	26.6	7.4	7.4	5.9 5.9	5.9	73.4 73.5	73.5	1.1	1.1	<1.0	<1.0
18 August 2025	13:32	Cloudy	Middle	0.05	23.4	23.4	7.8 7.8	7.8	6.6	6.6	77.6 77.2	77.4	6.8	6.7	<1.0 <1.0	<1.0
20 August 2025	12:30	Fine	Middle	0.05	29.7 29.7	29.7	7.6 7.6	7.6	5.9 5.8	5.8	77.0 76.9	77.0	2.5	2.5	1.2	1.4
23 August 2025	13:45	Sunny	Middle	0.05	29.2 29.2	29.2	7.5 7.5	7.5	5.7 5.6	5.6	73.8 73.4	73.6	4.3 4.3	4.3	1.5	1.4
25 August 2025	09:37	Sunny	Middle	0.05	29.0 28.9	29.0	7.6 7.6	7.6	5.8 5.7	5.7	74.8 73.8	74.3	3.7	3.7	<1.0 <1.0	<1.0
27 August 2025	08:31	Cloudy	Middle	0.05	26.4 26.4	26.4	7.0 7.0	7.0	6.4	6.4	79.2 79.2	79.2	2.9	2.9	2.7	2.2
29 August 2025	08:47	Rainy	Middle	0.05	24.7	24.7	7.1	7.1	7.8	7.8	94.0	94.1	9.3	9.2	<1.0	<1.0

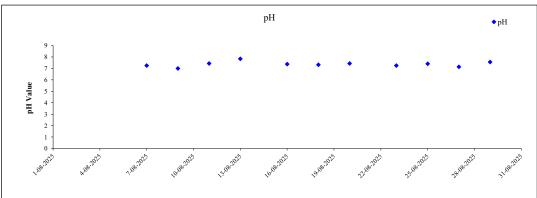

Date	Start Time	Weather	Water	depth	Tempera	ature (°C)	F	Н	DO (mg/L)	DO	(%)	Turbidit	ty (NTU)	Suspended S	olids (mg
Date	Start Time	weather	(:	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Avera
01 August 2025	13:34	Fine	Middle	0.06	27.2 27.2	27.2	6.9	6.9	6.6	6.6	82.6 82.7	82.7	9.0	9.0	<1.0	<1.0
07 August 2025	14:36	Cloudy	Middle	0.05	30.3	30.3	7.3	7.3	6.7	6.7	88.8 88.8	88.8	3.5	3.5	<1.0	<1.0
09 August 2025	13:56	Sunny	Middle	0.05	28.7	28.7	7.3	7.3	6.7	6.7	86.4 86.3	86.4	7.3	5.2	<1.0	<1.0
11 August 2025	15:37	Sunny	Middle	0.05	30.2	30.2	7.2	7.2	6.0	6.0	80.2 80.2	80.2	13.1	13.1	<1.0	<1.0
13 August 2025	11:54	Cloudy	Middle	0.05	27.1	27.1	8.0 8.0	8.0	8.4 8.4	8.4	105.4	105.4	5.2	5.2	<1.0	<1.
16 August 2025	12:06	Cloudy	Middle	0.05	26.8	26.8	7.1	7.1	5.3	5.3	66.3	66.0	4.2	4.3	<1.0	<1.0
18 August 2025	13:00	Cloudy	Middle	0.05	23.8	23.8	7.9	7.9	6.2	6.2	73.6	73.6	6.7	6.7	<1.0	<1.0
20 August 2025	12:00	Fine	Middle	0.05	29.7	29.7	7.4	7.4	6.7	6.7	88.4 88.2	88.3	2.1	2.1	1.8	2.1
23 August 2025	12:38	Sunny	Middle	0.05	29.7	29.8	7.0 7.0	7.0	7.2	7.2	94.9	94.7	3.8	3.8	1.3	1.2
25 August 2025	08:33	Sunny	Middle	0.05	29.7	29.7	6.8	6.8	6.4	6.4	83.5 83.5	83.5	3.3	3.3	1.1	1.2
27 August 2025	07:32	Cloudy	Middle	0.05	26.8	26.8	7.0 7.0	7.0	6.2	6.2	77.1	77.0	2.9	2.9	2.1	2.1
29 August 2025	07:38	Rainy	Middle	0.05	26.3	26.4	7.0	7.0	7.4	7.3	91.2	90.8	3.5	3.5	<1.0	1.0

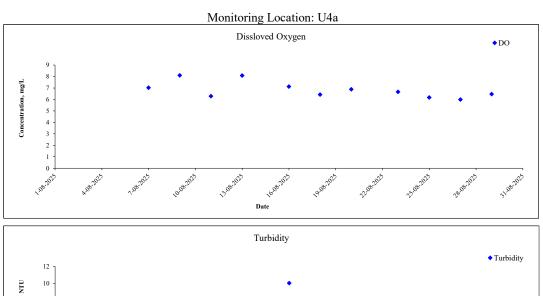

Date	Start Time	Weather	Water	depth	Tempera	ature (°C)	P	H	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	Suspended S	olids (mg/l
Date	Start Time	weather	(:	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Averag
01 August 2025	13:00	Fine	Middle	0.07	27.6 27.6	27.6	6.9	6.9	7.5	7.5	95.3 95.4	95.4	12.9	12.8	<1.0	<1.0
07 August 2025	14:01	Cloudy	Middle	0.07	30.2 30.2	30.2	6.8	6.8	7.1	7.1	94.1	94.1	9.4	9.4	<1.0	<1.0
09 August 2025	13:17	Sunny	Middle	0.06	29.0	29.0	7.1	7.1	7.1	7.1	92.2	92.3	4.0	4.0	<1.0	<1.0
11 August 2025	15:04	Sunny	Middle	0.07	29.2	29.2	7.2	7.2	7.2	7.2	94.2	94.3	7.9	8.0	1.1	<1.0
13 August 2025	11:10	Cloudy	Middle	0.07	27.0	27.0	8.1	8.1	8.4	8.4	105.6	105.5	5.7	5.7	<1.0	<1.0
16 August 2025	11:30	Cloudy	Middle	0.06	25.6	25.6	6.7	6.7	7.4	7.4	90.2	90.2	10.3	10.3	<1.0	<1.0
18 August 2025	12:23	Cloudy	Middle	0.06	23.6	23.6	7.7	7.7	7.9	7.9	93.5	93.5	5.1	5.1	<1.0	<1.0
20 August 2025	11:31	Fine	Middle	0.07	29.9	29.9	7.7	7.7	7.1	7.1	94.4	94.4	1.6	1.5	<1.0	1.2
23 August 2025	12:02	Sunny	Middle	0.07	29.5	29.5	7.5	7.5	7.2	7.2	94.8	94.7	2.6	2.6	3.0	3.1
25 August 2025	08:00	Sunny	Middle	0.06	29.7	29.7	6.9	6.9	7.1	7.1	93.5	93.5	4.5	4.5	1.2	1.2
27 August 2025	07:07	Cloudy	Middle	0.06	26.6	26.6	7.0	7.0	7.5	7.2	92.8	92.5	5.7	5.7	2.4	2.6
29 August 2025	07:09	Rainy	Middle	0.06	26.7	26.7	7.0	7.0	7.4	7.4	91.7	91.7	6.4	6.4	<1.0	<1.0

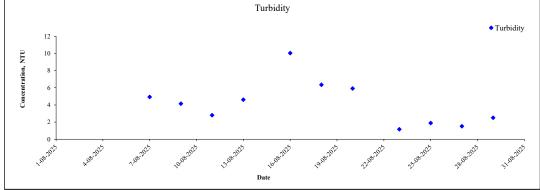


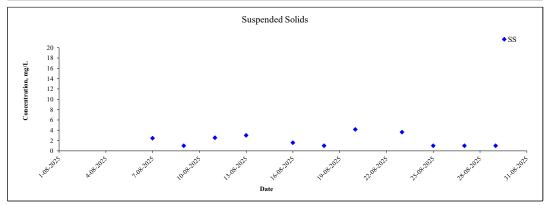


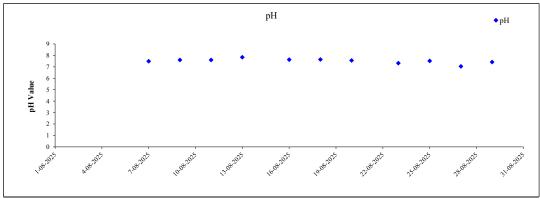


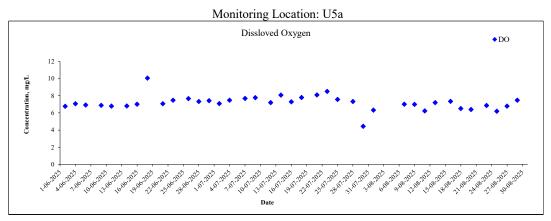


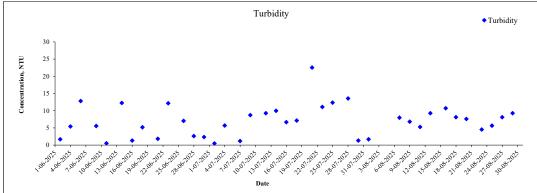


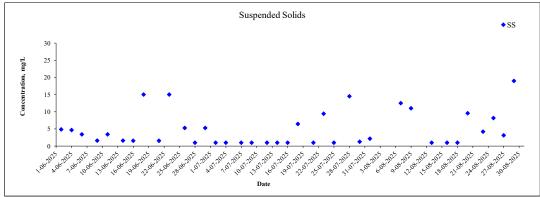


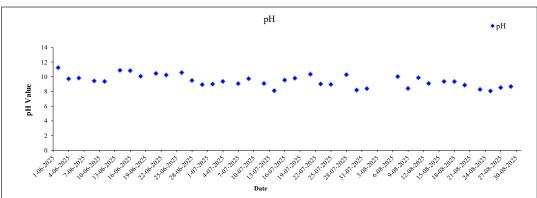


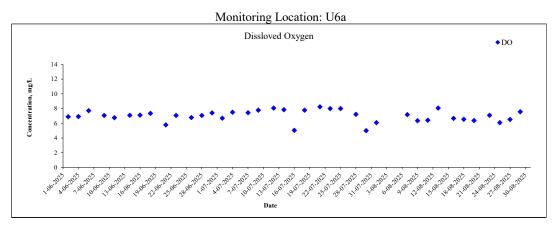


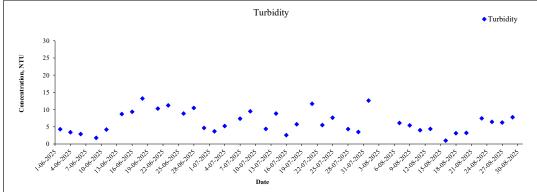


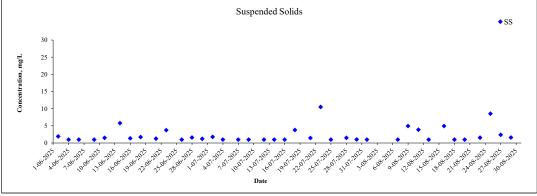


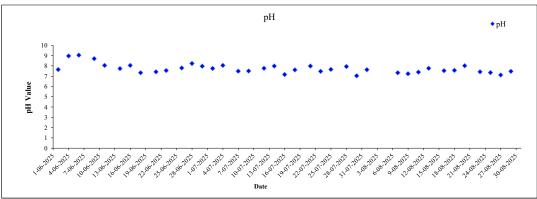




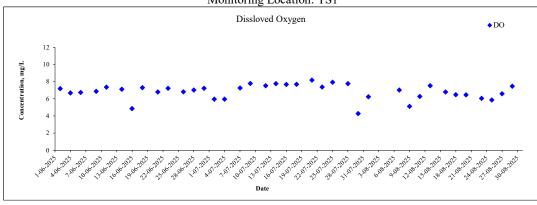


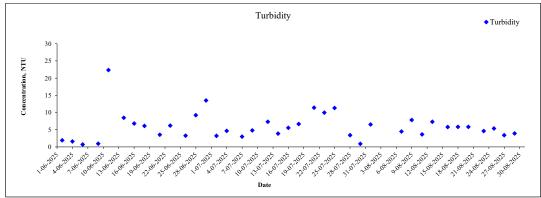


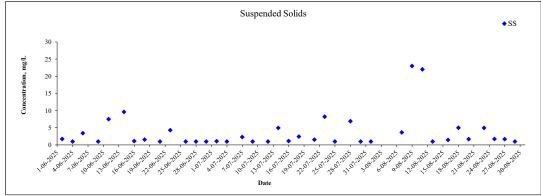


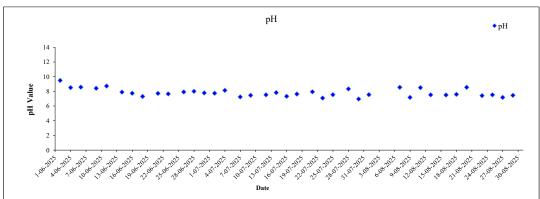


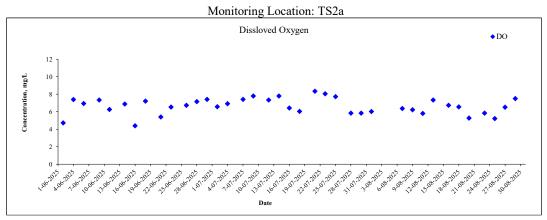


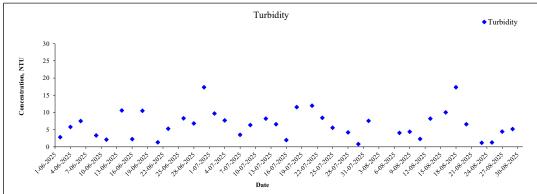


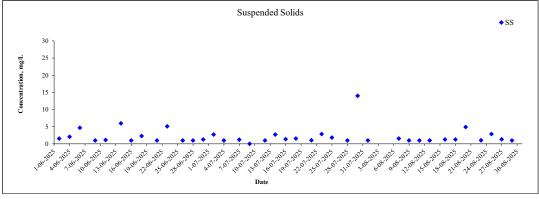


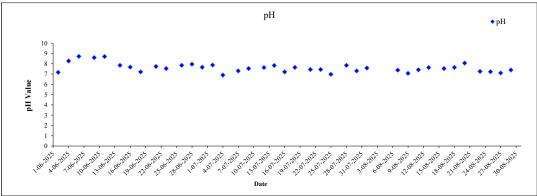


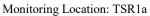


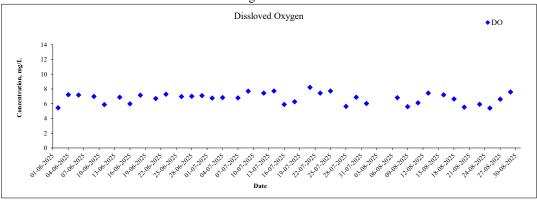


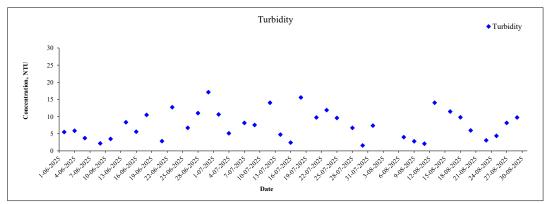


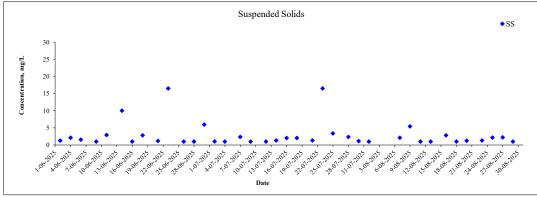


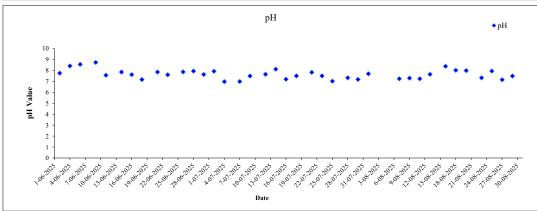


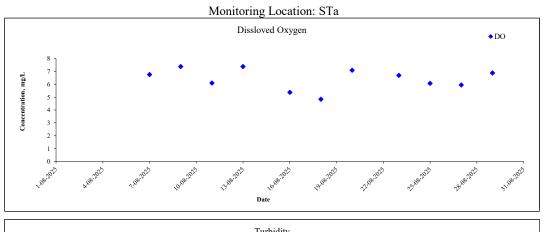


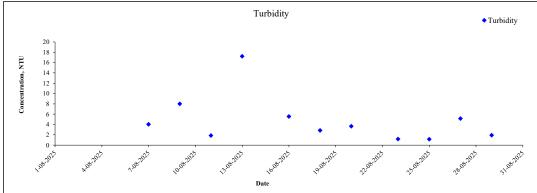


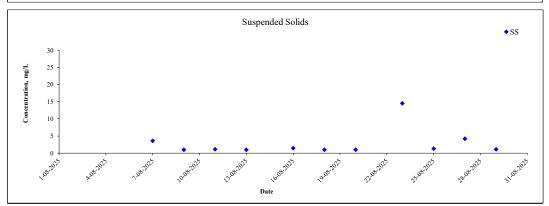


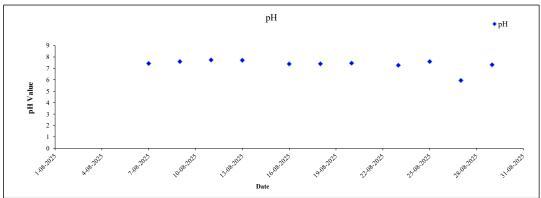


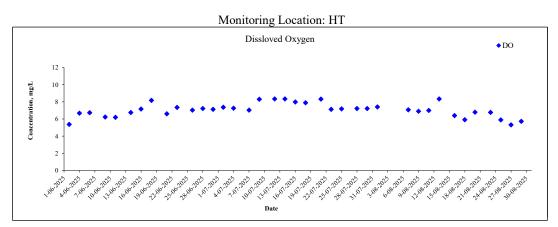


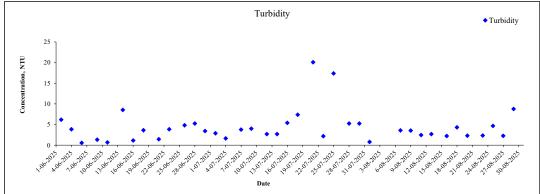


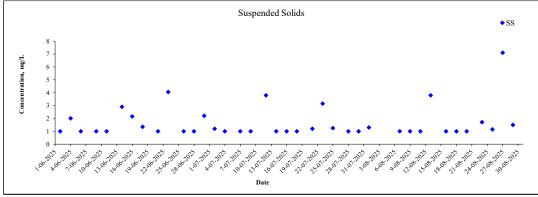


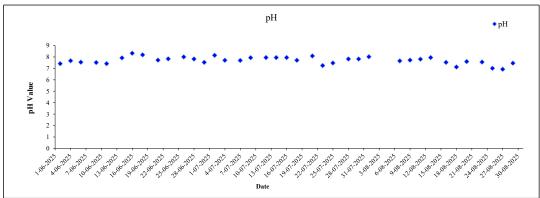


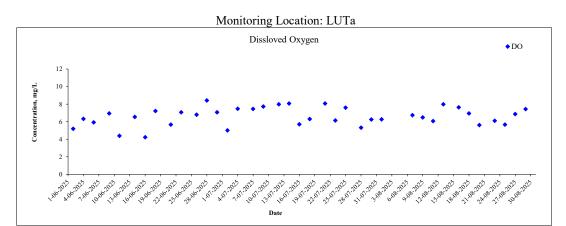


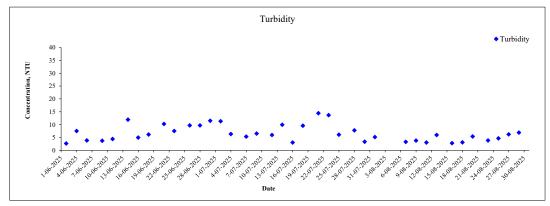


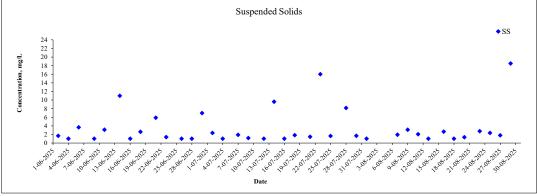


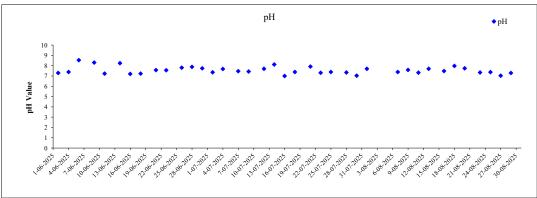


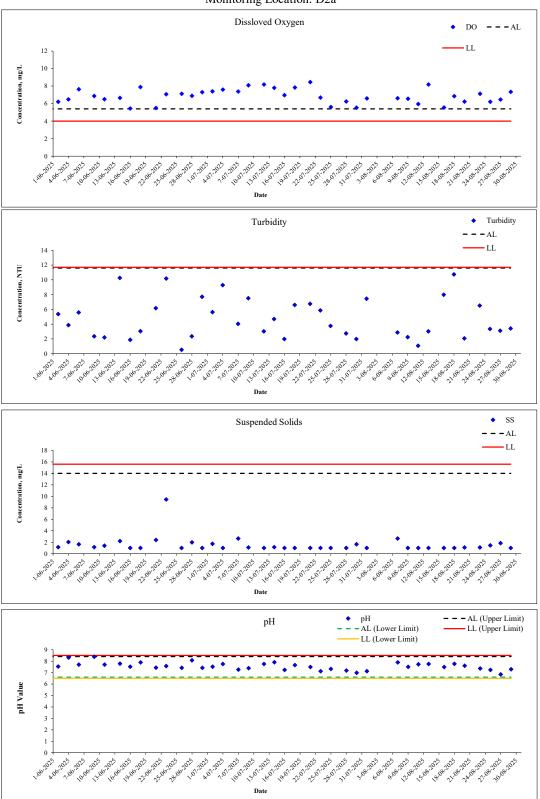


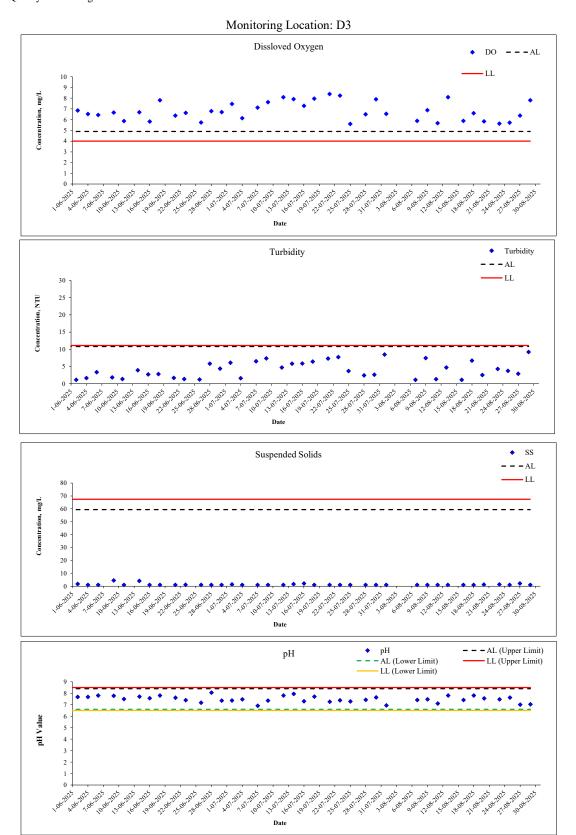




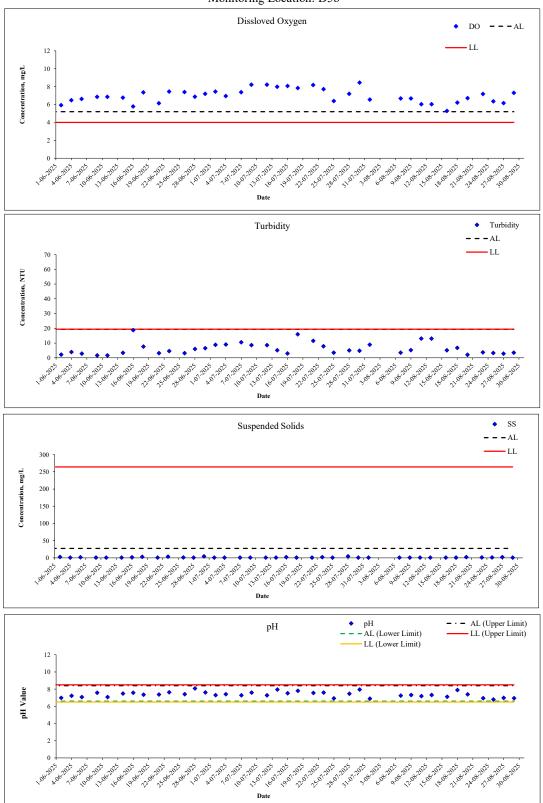


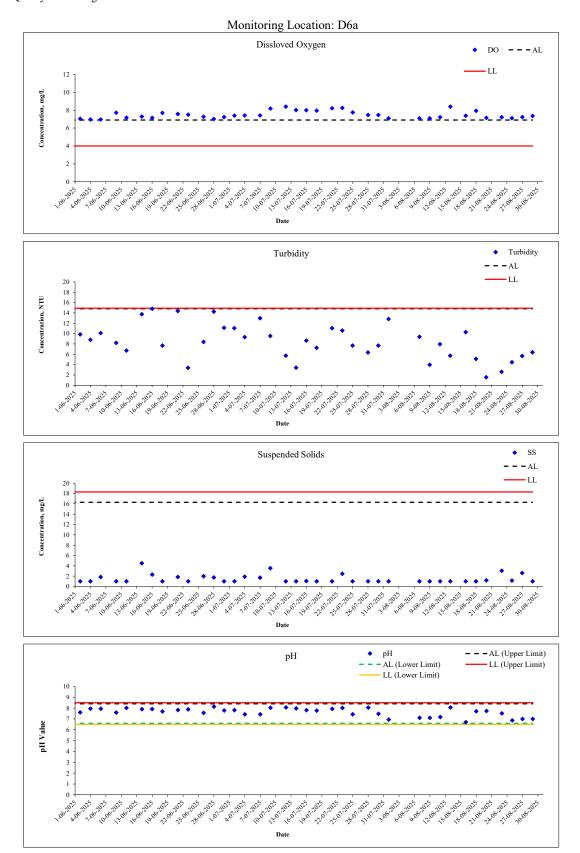






Monitoring Location: D2a





Monitoring Location: D5b

Acumen Laboratory and Testing Limited

Workshop 04, 7/F, The Whitney, No. 183 Wai Yip Street, Kwun Tong, Kowloon Tel: (852) 2333 6823 Fax: (852) 2333 1316

Page 1 of 1

Appendix - Quality Control Summary Table

Project Name: Service Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development -

Environmental Team

		Method Bla	nk Report	Dı	uplicate Report		Sample Spik	e Report	D / F-:
		MDL	Result	Original Result	Duplicate Result	RPD	Spike concentration	Spike Recovery	Pass / Fail
Sampling Date	Job No.	mg/L	mg/L	mg/L	mg/L	%	mg/L	%	/
01/08/2025	R251796	0.22	0.10	4.85	4.72	2.72	10	93.4	Pass
07/08/2025	R251846	0.22	0.10	3.56	3.66	-2.77	10	95.3	Pass
09/08/2025	R251850	0.22	0.11	4.77	4.61	3.50	10	93.3	Pass
11/08/2025	R251861	0.22	0.11	3.32	3.43	-3.26	10	94.4	Pass
13/08/2025	R251884	0.22	0.08	3.76	3.64	3.24	10	92.7	Pass
16/08/2025	R251906	0.22	0.10	4.40	4.46	-1.35	10	94.2	Pass
18/08/2025	R251912	0.22	0.09	4.21	4.07	3.38	10	92.8	Pass
20/08/2025	R251919	0.22	0.07	4.96	5.05	-1.80	10	94.3	Pass
23/08/2025	R251959	0.22	0.11	3.02	2.95	2.35	10	93.3	Pass
25/08/2025	R251977	0.22	0.10	3.03	3.08	-1.64	10	94.2	Pass
27/08/2025	R251987	0.22	0.11	3.17	3.11	1.91	10	92.3	Pass
29/08/2025	R251993	0.22	0.10	4.59	4.74	-3.22	10	93.5	Pass

Acumen Laboratory and Testing Limited

Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong Tel: (852) 2333 6823 Fax: (852) 2333 1316

Page **1** of **2**

Appendix - Quality Control Summary Table

Project Name: Service Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team

		Method Bla	nk Report	Du	uplicate Report		Sample Spik	e Report	Dage / Fail
		MDL	Result	Original Result	Duplicate Result	RPD	Spike concentration	Spike Recovery	Pass / Fail
Sampling Date	Job No.	mg/L	mg/L	mg/L	mg/L	%	mg/L	%	/
01/08/2025	R251797	0.22	0.09	3.62	3.51	3.09	10	94.2	Pass
07/08/2025	R251847	0.22	0.08	4.95	5.13	-3.57	10	93.8	Pass
07/08/2025	R251847	0.22	0.09	3.33	3.22	3.36	10	92.6	Pass
09/08/2025	R251851	0.22	0.08	3.32	3.19	3.99	10	93.2	Pass
09/08/2025	R251851	0.22	0.08	5.00	5.10	-1.98	10	95.0	Pass
11/08/2025	R251862	0.22	0.10	5.08	5.29	-4.04	10	93.1	Pass
11/08/2025	R251862	0.22	0.07	4.84	4.67	3.63	10	92.7	Pass
13/08/2025	R251885	0.22	0.09	3.88	3.77	2.88	10	93.0	Pass
13/08/2025	R251885	0.22	0.11	4.16	4.36	-4.69	10	94.6	Pass
16/08/2025	R251907	0.22	0.11	4.21	4.27	-1.42	10	93.9	Pass
16/08/2025	R251907	0.22	0.09	3.87	3.76	2.88	10	92.8	Pass
18/08/2025	R251913	0.22	0.07	4.59	4.45	3.10	10	93.7	Pass
18/08/2025	R251913	0.22	0.09	4.25	4.38	-3.01	10	95.0	Pass

Acumen Laboratory and Testing Limited Flat/Rm D, 12/F, Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

Fax: (852) 2333 1316 Tel: (852) 2333 6823

Page 2 of 2

		Method Bla	nk Report	Di	uplicate Report		Sample Spike Report		D / E-il
		MDL	Result	Original Result	Duplicate Result	RPD	Spike concentration	Spike Recovery	Pass / Fail
Sampling Date	Job No.	mg/L	mg/L	mg/L	mg/L	%	mg/L	%	/
20/08/2025	R251920	0.22	0.10	4.10	4.26	-3.73	10	92.9	Pass
20/08/2025	R251920	0.22	0.07	3.97	3.83	3.60	10	92.7	Pass
23/08/2025	R251960	0.22	0.07	4.17	4.06	2.67	10	92.9	Pass
23/08/2025	R251960	0.22	0.10	4.41	4.57	-3.56	10	94.9	Pass
25/08/2025	R251978	0.22	0.1	3.60	3.70	-2.74	10	92.7	Pass
25/08/2025	R251978	0.22	0.11	5.02	4.86	3.24	10	93.0	Pass
27/08/2025	R251988	0.22	0.11	3.38	3.26	3.61	10	93.5	Pass
27/08/2025	R251988	0.22	0.08	3.33	3.40	-2.08	10	93.4	Pass
29/08/2025	R251994	0.22	0.07	3.14	3.25	-3.44	10	94.3	Pass
29/08/2025	R251994	0.22	0.10	4.53	4.39	3.14	10	94.7	Pass

Event		ET Leader	Action IEC ER	Contractor
Action Level		ET Ecadei	ILO LIV	Contractor
Action level being exceeded by one sampling day	 2. 3. 4. 6. 	plant, equipment and Contractor's working methods;	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. 	 Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than one consecutive sampling days	 2. 3. 4. 6. 7. 	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exceedance.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	1. Inform the Engineer and confirm notification of the noncompliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures.

Limit Level				
Limit level to confir to confir exceeded 2. Identify some sampling day 4. Check plant, Contract 5. Discuss with IEC 6. Ensure are imple 7. Increase frequence	monitoring data, all equipment and or's working methods; mitigation measures and Contractor; 3. mitigation measures emented;	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
being to confirence to confirence than one consecutive sampling days 4. Check plant, Contract 5. Discuss with IEC 6. Ensure are imple 7. Increase frequence exceeda	monitoring data, all equipment and or's working methods; mitigation measures 3. ER and Contractor; mitigation measures emented;	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. Consider and instruct, if necessary the Contractor to slow down or to stop all or part of the marine work until no exceedance if Limit Level. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. As directed by the ER, to slow down or to stop all or part of the marine work or construction activities.

Summary of Monthly Waste Flow Table for the Project in 2025

	T . 1	Actual	Quantities of In-	ert C&D Materia	als Generated Mo	onthly	Ac	tual Quantities o	f C&D Materia	ls Generated Mo	onthly
	Total Quantity	Hard Rock and	Reused	Reused	Disposed			Paper /			Others,
Month	Generated	Large Broken	in the	in other	as	Imported Fill	Metals	Cardboard	Plastic	Chemical	e.g.
		Concrete	Contract	Projects	Public Fill			Packaging		Waste	General Refuse
	$(in '000m^3)$	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Jan	0.48	0.00	0.00	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.04
Feb	1.51	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Mar	6.31	0.00	0.00	6.23	0.00	0.00	0.00	0.00	0.00	0.00	0.08
Apr	8.66	0.00	0.00	8.51	0.00	0.00	0.00	0.00	0.00	0.00	0.15
May	7.04	0.00	0.00	6.76	0.00	0.00	0.00	0.00	0.00	0.00	0.28
Jun	5.45	0.00	0.00	4.71	0.00	0.00	0.00	0.00	0.00	0.00	0.74
Sub-total	29.46	0.00	0.00	28.15	0.00	0.00	0.00	0.00	0.00	0.00	1.31
Jul	1.86	0.00	0.00	1.61	0.00	0.00	0.00	0.00	0.00	0.00	0.25
Aug	6.72	0.00	0.00	6.26	0.00	0.00	0.00	0.00	0.00	0.00	0.46
Sep	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oct	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Nov	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dec	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	38.05	0.00	0.00	36.02	0.00	0.00	0.00	0.00	0.00	0.00	2.03

Remark: As the construction phase EM&A programme of Contract 3 started on 4 August 2025, the cumulative waste flow table of the Project includes waste generated by Contract 1 to Contract 3 starting from August 2025.

Appendix 7.1 Event and Action Plan for Landscape and Visual

Event/Action Plan for Landscape and Visual

Event		Ad	ction	
	ET	IEC	ER	Contractor
Design Check	 Check final design conforms to the requirements of EP and prepare report. 	 Check report. Recommend remedial design if necessary. 	Undertake remedial design if necessary.	-
Nonconformity on one occasion	1.Inform the IEC, ER and the Contractor 2.Discuss remedial actions with IEC, ER and Contractor 3.Monitor remedial actions until rectification has been completed	1. Check inspection report. 2. Check Contractor's working method 3. Discuss with ET, ER and Contractor on possible remedial measures. 4. Advise ER on effective of proposed remedial measures. 5. Check implementation of remedial measures	1.Confirm receipt of notification of nonconformity in writing 2.Review and agree on the remedial measures proposed by the Contractor 3.Ensure remedial measures are properly implemented	1.Identify source and investigate the nonconformity 2.Amend working methods agreed with ER as appropriate 3.Rectify damage and undertake any necessary replacement.
Repeated nonconformity	1. Identify sources 2. Inform the Contractor, IEC and ER 3. Discuss inspection frequency 4. Discuss remedial actions with IEC, ER and Contractor 5. Monitor remedial actions until rectification has been completed 6. If nonconformity stops, cease additional monitoring	Check inspection report Check Contractor's working method Discuss with ET, ER and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures	Notify the Contractor In consultation with the ET and IEC, agree with the Contractor on the remedial measures to be implemented Supervise implementation of remedial measures	1. Identify source and investigate the nonconformity 2. Amend working methods agreed with ER as appropriate 3. Rectify damage and undertake any necessary replacement. 4. Stop relevant portion of works as determined by ER until the nonconformity is abated.

Appendix 9.1 Complaint Log

Statistical Summary of Environmental Complaints for Contract 1

Day setting Dayled	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 31 August 2025	0	0	N/A	

Statistical Summary of Environmental Summons for Contract 1

Danishin a Danish	Environmental Summons Statistics			
Reporting Period	Frequency	Cumulative	Details	
1 – 31 August 2025	0	0	N/A	

Statistical Summary of Environmental Prosecution for Contract 1

Deposition Desired	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Details	
1 – 31 August 2025	0	0	N/A	

Statistical Summary of Environmental Complaints for Contract 2

Donation Build	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 31 August 2025	0	0	N/A	

Statistical Summary of Environmental Summons for Contract 2

Deporting Deried	Environmental Summons Statistics			
Reporting Period	Frequency	Cumulative	Details	
1 – 31 August 2025	0	0	N/A	

Statistical Summary of Environmental Prosecution for Contract 2

Domontino Domina	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Details	
1 – 31 August 2025	0	0	N/A	

Statistical Summary of Environmental Complaints for Contract 3

Donostino Donio d	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
4 – 31 August 2025	0	0	N/A	

Statistical Summary of Environmental Summons for Contract 3

Reporting Period	Environmental Summons Statistics				
	Frequency	Cumulative	Details		
4 – 31 August 2025	4 – 31 August 2025 0		N/A		

Statistical Summary of Environmental Prosecution for Contract 3

Reporting Period	Environmental Prosecution Statistics				
	Frequency	Cumulative	Details		
4 – 31 August 2025	0	0	N/A		

Appendix 10.1 Impact Monitoring Schedule of Next Reporting Month

Service Contract No. WD/03/2023 Hung Shui Kiu/Ha Tsuen New Development Area Second Phase Development - Environmental Team (Version 0.0)										
September 2025										
Sun	Mon	Tue	Wed	Thur	Fri	Sat				
	1	2	3	4	5	6				
	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a Impact Noise Monitoring at CM17a and CM19		Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11 and CM12	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14 Impact Noise Monitoring at CM1, CM2, CM3, CM4a, CM10, CM13, CM14, CM15a, CM16, CM18 and CM20	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUT: STa, D2a, D3, D5b and D6a				
7	8	9	10	11	12	13				
	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a		Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11, CM12, CM17a and CM19	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14 Impact Noise Monitoring at CM1, CM2, CM3, CM4a, CM10, CM13, CM14, CM15a, CM16, CM18 and CM20	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a					
14	15	16	17	18	19	20				
	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a	Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11 and CM12	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14 Impact Noise Monitoring at CM1, CM2, CM3, CM4a, CM10, CM13, CM14, CM15a, CM16, CM18 and CM20	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a Impact Noise Monitoring at CM17a and CM19		Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a				
21	22	23	24	25	26	27				
	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16 Impact Noise Monitoring at CM9, CM11 and CM12	Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14 Impact Noise Monitoring at CM1, CM2, CM3, CM4a, CM10, CM13, CM14, CM15a, CM16, CM18 and CM20	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a		Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TSI, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a Impact Noise Monitoring at CM17a and CM19	Impact Air Quality Monitoring at AM1, AM2, AM3, AM4, AM5, AM6 and AM16				
28	29	30								
	Impact Water Quality Monitoring at U2, U3a, U4a, U5a, U6a, TS1, TS2a, TSR1a, HT, LUTa, STa, D2a, D3, D5b and D6a Impact Air Quality Monitoring at AM7, AM8a, AM10, AM11, AM12 and AM14									

- Remark:

 1. The scholule may be changed due to unforeseen circumstances (e.g. adverne weather, etc.).

 2. Impact air quality monitoring at AAI2, AAI24 and AAI25 will be carried out when the planned sensitive receivers are commissioned.

 2. Impact air quality monitoring at AAI2, CARQS, CAR

Document prepared by

Aurecon Hong Kong Limited

Unit 1608, 16/F, Tower B, Manulife Financial Centre, 223 – 231 Wai Yip Street, Kwun Tong, Kowloon Hong Kong S. A. R.

T +852 3664 6888

F +852 3664 6999

E hongkong@aurecongroup.com

W aurecongroup.com

